Section 1. Receive data
■Channel Voice Messages

- Note off

Status	2nd byte	3rd byte
8 nH	kkH	vvH
9nH	kkH	00H

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{kk}=$ note number: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$
$\mathrm{vv}=$ note off velocity: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$

* The velocity values of Note Off messages are ignored.

-Note on

Status	2nd bytes	\quad3rd byte 9 nH

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{kk}=$ note number: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$
$\mathrm{vv}=$ note on velocity: $01 \mathrm{H}-7 \mathrm{FH}(1-127)$

-Control Change

* The value specified by a Control Change message will not be reset even by a Program Change, etc.

OBank Select (Controller number 0, 32)			
Status	$\underline{\text { 2nd bytes }}$		$\underline{\text { 3rd byte }}$
	00 H		mmH
BnH	20 H	11 H	

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
mm, $11=$ Bank number: 00 00H-7F 7FH (bank.1-bank.16384), Initial Value $=0000 \mathrm{H}$ (bank.1)

* Bank Select processing will be suspended until a Program Change message is received.

OData Entry (Controller number 6, 38)

$\underline{\text { Status }}$	$\underline{\text { 2nd bytes }}$		$\underline{\text { 3rd byte }}$
		06 H	
BnH	26 H		11 H

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{mm}, \mathrm{ll}=$ the value of the parameter specified by RPN
OVolume (Controller number 7)

Status	$\underline{\text { 2nd bytes }}$	3rd byte
BnH	07 H	vvH

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
vv = Volume: 00H-7FH (0-127), Initial Value $=64 \mathrm{H}(100)$

* Volume messages are used to adjust the volume balance of each Part.

OPan (Controller number 10)

Status	2nd bytes	3rd byte
BnH	0 AH	vvH

$\mathrm{n}=$ MIDI channel number: 0H-FH (ch.1-ch.16)
vv = pan: 00H-40H-7FH (Left-Center-Right), Initial Value $=40 \mathrm{H}$ (Center)

* For Rhythm Parts, this is a relative adjustment of each Instruments pan setting.'

OExpression (Controller number 11)		
Status	2nd bytes	3rd byte
BnH	0BH	vvH

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{vv}=$ Expression: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$, Initial Value $=7 \mathrm{FH}$ (127)

* It can be used independently from Volume messages. Expression messages are used for musical expression within a performance; e.g., expression pedal movements, crescendo and decrescendo

OHold 1 (Controller number 64)

Status	$\underline{\text { 2nd bytes }}$	$\frac{\text { 3rd byte }}{30 \mathrm{H}}$

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16) $\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$

OSostenuto (Controller number 66)

$\frac{\text { Status }}{\mathrm{BnH}}$	$\frac{\text { 2nd bytes }}{42 \mathrm{H}}$	$\frac{\text { 3rd byte }}{\mathrm{vvH}}$

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127) 0-63=\mathrm{OFF}, 64-127=\mathrm{ON}$
OSoft (Controller number 67)

Status	$\underline{\text { 2nd bytes }}$	3rd byte
$\left.\begin{array}{lll}\mathrm{BnH} & 43 \mathrm{H} & \mathrm{vvH}\end{array}\right]$		

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127) 0-63=\mathrm{OFF}, 64-127=\mathrm{ON}$
OEffect 1 (Reverb Send Level) (Controller number 91)

$\frac{\text { Status }}{\mathrm{BnH}}$	$\underline{\text { 2nd bytes }}$	$\frac{\text { 3rd byte }}{5 \mathrm{BH}}$

$\mathrm{n}=\mathrm{MIDI}$ channel number: 0H-FH (ch.1-ch.16)
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$, Initial Value $=28 \mathrm{H}(40)$

* This message adjusts the Reverb Send Level of each Part.

OEffect 3 (Chorus Send Level) (Controller number 93)

$\frac{\text { Status }}{\mathrm{BnH}}$	$\frac{\text { 2nd bytes }}{5 \mathrm{DH}}$	$\frac{\text { 3rd byte }}{\mathrm{vvH}}$

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$, Initial Value $=00 \mathrm{H}(0)$

* This message adjusts the Chorus Send Level of each Part.

ORPN MSB/LSB (Controller number 100, 101)

Status	2nd bytes	3rd byte
BnH	65 H	mmH
BnH	64 H	11 H

$\mathrm{n}=\mathrm{MIDI}$ channel number: 0H-FH (ch.1-ch.16)
$\mathrm{mm}=$ upper byte of parameter number specified by RPN
$\mathrm{ll}=$ lower byte of parameter number specified by RPN

* The value specified by RPN will not be reset even by messages such as Program Change or Reset All Controller.
RPN
The RPN (Registered Parameter Number) messages are expanded control changes, and each function of an RPN is described by the MIDI Standard.
To use these messages, you must first use RPN MSB and RPN LSB messages to specify the parameter to be controlled, and then use Data Entry messages to specify the value of the specified parameter. Once an RPN parameter has been specified, all Data Entry messages received on that channel will modify the value of that parameter. To prevent accidents, it is recommended that you set RPN Null (RPN Number $=7 \mathrm{FH} / 7 \mathrm{FH}$) when you have finished setting the value of the desired parameter.Refer to Section 4. "Examples of actual MIDI messages" <Example 4> (p. 7).
On the FP-3, RPN can be used to modify the following parameters.

RPN	Data entry	
MSB LSB	MSB LSB	Explanation
00 H 00 H	mmH ---	Pitch Bend Sensitivity mm : 00H-18H ($0-24$ semitones), Initial Value $=02 \mathrm{H}$ (2 semitones) 11: ignored (processed as 00h) specify up to 2 octaves in semitone steps
00 H 01 H	mmH 11 H	Master Fine Tuning mm, ll: $0000 \mathrm{H}-4000 \mathrm{H}-7 \mathrm{~F} 7 \mathrm{FH}(-100-0-+99.99$ cents), Initial Value $=4000 \mathrm{H}$ (0 cent) 11: ignored (processed as 00h) specify up to 2 octaves in semitone steps Refer to 4. Supplementary material, "About tuning" (p. 8)
00H 02H	mmH ---	Master Coarse Tuning mm : $28 \mathrm{H}-40 \mathrm{H}-58 \mathrm{H}(-24-0-+24$ semitones), Initial Value $=40 \mathrm{H}$ (0 cent) 11: ignored (processed as 00h)
7FH 7FH	--- ---	RPN null Set condition where an RPN is unspecified. The data entry messages after set RPN null will be ignored. (No Data entry messages are required after RPN null). Settings already made will not change. mm , Il: ignored

-Program Change

Status	2nd bytes CnH

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
pp $=$ Program number: $00 \mathrm{H}-25 \mathrm{H}, 3 \mathrm{FH}$ (prog.1-prog.38, prog.64)

* After a Program Change message is received, the sound will change beginning with the next Note-on. Voices already sounding when the Program Change message was received will not be affected.

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{mm}, \mathrm{ll}=$ Pitch Bend value: 00 00H - 40 00H - 7F 7FH ($-8192-0-+8191$)

■Channel Mode Messages

-All Sounds Off (Controller number 120)

$\frac{\text { Status }}{\mathrm{BnH}}$	$\underline{\text { 2nd byte }}$	
	78 H	3rd bytes

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* When this message is received, all currently-sounding notes on the corresponding channel will be turned off immediately
-Reset All Controllers (Controller number 121)

$\frac{\text { Status }}{\mathrm{BnH}}$	$\frac{\text { 2nd byte }}{79 \mathrm{H}}$	$\frac{\text { 3rd bytes }}{}$
	00 H	

$\mathrm{n}=\mathrm{MIDI}$ channel number: 0H-FH (ch.1-ch.16)

* When this message is received, the following controllers will be set to their reset values.

Controller	$\underline{\text { Reset value }}$
Pitch Bend Change	+-0 (Center)
Expression	127 (max)
Hold 1	0 (off)
Sostenuto	0 (off)
Soft	0 (off)
RPN	unset; previously set data will not change

-All Notes Off (Controller number 123)

Status	2nd byte	3 rd byte
BnH	7BH	00 H

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* When All Notes Off is received, all notes on the corresponding channel will be turned off. However if Hold 1 or Sostenuto is ON, the sound will be continued until these are turned off.
-OMNI OFF (Controller number 124)

$\frac{\text { Status }}{\mathrm{BnH}}$	$\frac{\text { 2nd byte }}{7 \mathrm{CH}}$	$\frac{\text { 3rd bytes }}{00 \mathrm{H}}$

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* The same processing will be carried out as when All Notes Off is received

-OMNI ON (Controller number 125)

Status	$\underline{\text { 2nd byte }}$	3rd bytes BnH
	7 DH	00 H

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* OMNI ON is only recognized as "All notes off;" the Mode doesn't change (OMNI OFF remains).

OMONO (Controller number 126)

Status	$\frac{\text { 2nd byte }}{\mathrm{BnH}} \quad$	
7 EH	3rd bytes	
mmH		

$\mathrm{n}=\mathrm{MIDI}$ channel number: 0H-FH (ch.1-ch.16)
$\mathrm{mm}=$ mono number: $00 \mathrm{H}-10 \mathrm{H}(0-16)$

* The same processing will be carried out as when All Sounds Off and All Notes Off is received, and the corresponding channel will be set to Mode $4(M=1)$ regardless of the value of "mono number."

-POLY (Controller number 127)

Status	2nd byte	3rd bytes
BnH	7FH	00H

$\mathrm{n}=$ MIDI channel number: 0H-FH (ch.1-ch.16)

* The same processing will be carried out as when All Sounds Off and All Notes Off is received, and the corresponding channel will be set to Mode 3.

©System Realtime Message

-Active Sensing

Status
FEH

* When Active Sensing is received, the unit will begin monitoring the intervals of all further messages. While monitoring, if the interval between messages exceeds 420 ms , the same processing will be carried out as when All Sounds Off, All Notes Off and Reset All Controllers are received, and message interval monitoring will be halted.

■System Exclusive Message

Status	$\frac{\text { Data byte }}{}$	$\underline{\text { Status }}$
F0H	iiH, ddH,, eeH	F7H

F0H: System Exclusive Message status
ii $=$ ID number: an ID number (manufacturer ID) to indicate the manufacturer whose Exclusive message this is. Rolands manufacturer ID is 41 H . ID numbers 7EH and 7FH are extensions of the MIDI standard; Universal Non-realtime Messages (7EH) and Universal Realtime Messages (7FH).
dd,...,ee = data: 00H-7FH (0-127)
F7H: EOX (End Of Exclusive)

The System Exclusive Messages received by the FP-3 are Universal Realtime System Exclusive messages and Data Set (DT1).

-Universal Realtime System Exclusive Messages

OMaster volume

$\frac{\text { Status }}{\text { F0H }}$	$\frac{\text { Data byte }}{7 \mathrm{FH}, 7 \mathrm{FH}, 04 \mathrm{H}, 01 \mathrm{H}, 11 \mathrm{H}, \mathrm{mmH}}$	$\frac{\text { Status }}{\mathrm{F} 7 \mathrm{H}}$
$\frac{\text { Byte }}{\text { F0H }}$	Explanation	
7 FH	Exclusive status	
7 FH	ID number (universal realtime message)	
04 H	Device ID (Broadcast)	
01 H	Sub ID\#1 (Device Control messages)	
11 H	Sub ID\#2 (Master Volume)	
mmH	Master volume lower byte	
F7H	Master volume upper byte	

[^0]
-Universal Non-realtime System Exclusive Messages

Oldentity Request Message

$\frac{\text { Status }}{}$	$\frac{\text { Data byte }}{7 \mathrm{FH}, 10 \mathrm{H}, 06 \mathrm{H}, 01 \mathrm{H}} \quad \frac{\text { Status }}{\text { F7H }}$
F0H	
Byte Explanation F0H Exclusive status 7FH ID number (universal realtime message) 10 H Device ID 06 H Sub ID\#1 (General Information) 01 H Sub ID\#2 (Identity Request) F7H EOX (End Of Exclusive)	

* The Device ID is 10 H or 7FH (Broadcast).

-Data transmission

FP-3 can receive the various parameters using System Exclusive messages. The exclusive message of data has a model ID of 42 H and a device ID of 10 H (17).

OData set 1 (DT1)

This is the message that actually performs data transmission, and is used when you wish to ransmit the data

Status	Data byte	Status
F0H	$41 \mathrm{H}, 10 \mathrm{H}, 42 \mathrm{H}, 12 \mathrm{H}, \mathrm{aaH}, \mathrm{bbH}, \mathrm{ccH}, \mathrm{ddH}, \ldots$ eeH, sum	F7H
Byte	Explanation	
F0H	Exclusive status	
41H	ID number (Roland)	
10H	Device ID	
42 H	Model ID	
12H	Command ID (DT1)	
aaH	Address MSB: upper byte of the starting address of the	nsmitted data
bbH	Address: middle byte of the starting address of the tran	itted data
ccH	Address LSB: lower byte of the starting address of the	smitted data
ddH	Data: the actual data to be transmitted. Multipl transmitted starting from the address.	bytes of data

eeH	Data
sum	Checksum
F7H	EOX (End Of Exclusive)

* The amount of data that can be transmitted at one time depends on the type of data, and data can be received only from the specified starting address and size. Refer to the Address and Size given in Section 3 (p. 5).
* Data larger than 128 bytes must be divided into packets of 128 bytes or less. If "Data Set $1^{\prime \prime}$ is transmitted successively, there must be an interval of at least 40 ms between packets.
Regarding the checksum please refer to section 4 (p. 7).

Section 2. Transmit data

* The following messages are transmitted on MIDI channel 10 (ch. 10) when a Drum Set tone is selected on the panel.
* In Split mode, only the note messages of the performance data from the left-hand side are transmitted on MIDI channel 3 (ch. 3)

■Channel Voice Messages

- Note off

Status	$\underline{\text { 2nd byte }}$	3rd byte 8 nH

$\mathrm{n}=$ MIDI channel number: 0H-FH (ch.1-ch.16)
$\mathrm{kk}=$ note number: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$
$\mathrm{vv}=$ note off velocity: 00H-7FH (0-127)

* Note off message is sent out with the velocity of 40 H

ONote on

Status	$\underline{\text { 2nd bytes }}$		3rd byte
9 nHH	kkH	vvH	

$\mathrm{n}=\mathrm{MIDI}$ channel number: 0H-FH (ch.1-ch.16)
$\mathrm{kk}=$ note number: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$
$\mathrm{vv}=$ note on velocity: $01 \mathrm{H}-7 \mathrm{FH}(1-127)$
-Control Change
OBank Select (Controller number 0,32)

Status	2nd bytes		3rd byte
	00 H		mmH
BnH	20 H	11 H	

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16) $\mathrm{mm}, \mathrm{ll}=$ Bank number: 00H-7FH (bank.1-bank.16384)

* Not transmitted when MIDI Out Mode is set to 2.

OExpression (Controller number 11)

Status	2nd bytes	3rd byte
BnH	0BH	vvH

$\mathrm{n}=$ MIDI channel number: 0H-FH (ch.1-ch.16)
vv = Expression: 00H-7FH (0-127)
OHold 1 (Controller number 64)

Status	$\underline{\text { 2nd bytes }}$	
BnH 40 H	3rd byte vvH	

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$
OSostenuto (Controller number 66)

| Status | $\frac{\text { 2nd bytes }}{\mathrm{BnH}}$ | 42 H |
| :--- | :--- | :--- |\quad| 3rd byte |
| :--- |

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127) 0-63=\mathrm{OFF}, 64-127=\mathrm{ON}$
OSoft (Controller number 67)

Status	2nd bytes	3rd byte
BnH	43 H	vvH
$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)		
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$		
OEffect 1 (Reverb Send Level) (Controller number 91)		
Status	2nd bytes	3rd byte
BnH	5BH	vvH
$\mathrm{n}=\mathrm{MIDI}$ channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)		
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$		

OEffect 3 (Chorus Send Level) (Controller number 93)

| Status | $\frac{\text { 2nd bytes }}{\mathrm{BnH}} \quad$5 DH$\quad$3rd byte
 vvH |
| :--- | :--- | :--- |

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{vv}=$ Control value: $00 \mathrm{H}-7 \mathrm{FH}(0-127)$

* Not transmitted when MIDI Out Mode is set to 2

-Program Change

Status	$\frac{\text { 2nd bytes }}{\mathrm{CnH}}$
ppH	

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16) $\mathrm{pp}=$ Program number: $00 \mathrm{H}-25 \mathrm{H}, 3 \mathrm{FH}$ (prog.1-prog.38, prog. 64)

* Not transmitted when MIDI Out Mode is set to 2.
-System Realtime Message
-Realtime Clock
Status
F8H
-Active sensing
Status
FEH
* This will be transmitted constantly at intervals of approximately 250 ms .

■System exclusive messages

-Universal Non-realtime System Exclusive Messages
Oldentity Reply

$\frac{\text { Status }}{\text { F0H }} \quad$| Data byte |
| :--- |
| $7 \mathrm{EH}, 10 \mathrm{H}, 06 \mathrm{H}, 02 \mathrm{H}, 41 \mathrm{H}, 3 \mathrm{AH}, 01 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}, 01 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}, \mathrm{F} 7 \mathrm{H}$ |$\frac{\text { Status }}{\mathrm{F} 7 \mathrm{H}}$

F0H $7 \mathrm{EH}, 10 \mathrm{H}, 06 \mathrm{H}, 02 \mathrm{H}, 41 \mathrm{H}, 3 \mathrm{AH}, 01 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}, 01 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}, \mathrm{F} 7 \mathrm{H} \quad$ F7H

Byte FOH	Explanation Exclusive status
10 H	ID number (universal non-realtime message)
06 H	Device ID (use the same as the device ID of Roland)
02 H	Sub ID\#1 (General Information)
41 H	Sub ID\#2 (Identity Reply)
3 AH	ID number (Roland)
01 H	Device family code (LSB)
00 H	Device family code (MSB)
00 H	Device family number code (LSB)
00 H	Device family number code (MSB)
01 H	Software revision level
00 H	Software revision level
00 H	Software revision level
F7H	Software revision level
	EOX (End of Exclusive)

Section 3. Parameter Address Map (Model ID = 42H)

This map indicates address, size, Data (range), Parameter, Description, and Default Value of parameters which can be transferred using and "Data set 1 (DT1)." All the numbers of address, size, Data, and Default Value are indicated in 7-bit Hexadecimal-form.

* Addresses marked at " $\#$ " cannot be used as starting addresses.

-System Parameters

| Parameters related to the system of the device are called System Parameters. | |
| :--- | :--- | :--- | :--- | :--- |
| Address (H) $\underline{\text { Size }(\mathrm{H})}$ $\underline{\text { Data }(\mathrm{H})}$ $\underline{\text { Parameter }}$
 400000 000004 $0018-07 \mathrm{E} 8$ MASTER TUNE
 $400001 \#$ $\underline{\text { Description }}$ | |

4000 02\#
4000 03\#

* Refer to section 4. Supplementary material, "About tuning" (p. 8).

400004	000001	00-7F	MASTER VOLUME	0-127	7F	127
				(= F0 7F 7F 040100 vv F7)		
400005	000001	28-58	MASTER KEY-SHIFT	-24-+24 [semitones]	40	0 [semitones]
400006	000001	01-7F	MASTER PAN	-63 (LEFT) - +63 (RIGHT)	40	0 (CENTER)
400110	000010	00-40	VOICE RESERVE	Part 10 (Drum Part)	02	2
4001 11\#				Part 1	06	6
4001 12\#				Part 2	02	2
4001 13\#				Part 3	02	2
4001 14\#				Part 4	02	2
4001 15\#				Part 5	02	2
4001 16\#				Part 6	02	2
4001 17\#				Part 7	02	2
4001 18\#				Part 8	02	2
4001 19\#				Part 9	02	2
4001 1A\#				Part 11	00	0
4001 :\#				:		
4001 1F\#				Part 16	00	0

* The sum total of voices in the voice reserve function must be equal to or less than the number of the maximum polyphony. The maximum polyphony of the FP-3 is 64 .

400130	000001	$00-05$	REVERB MACRO	00
400300	000002	EFX TYPE (MSB, LSB)	$0000-7 \mathrm{~F}$	
		$0000:$ Thru		
		00 40: Sympathetic Resonance		
		01 22: Rotary		

* This EFX Type is current EFX type of this system. When part EFX type is same to this EFX type, that part connect to EFX.

40031 B	000001	00-7F	EFX Control Source	00: OFF	00	
				01-5F: Control Change No.		
				72: Bender		
40031 C	000001	00-7F	EFX Control Depth		7F	$-100 \%-+100 \%$

* You can control the amount of Sympathetic Resonance or speed of the rotary effect in real time by means of the event that is assigned to EFX Control Source. If you set Sympathetic Resonance (MSB: 00h; LSB: 40h) to EFX type, 40h to EFX Control Source, and 7Fh to EFX Control Depth, you can control the amount of Sympathetic Resonance by means of Damper messages.

-Part Parameters

FP-3 has 16 parts. Parameters that can be set individually for each Part are called Part parameters.
If you use exclusive messages to set Part parameters, specify the address by Block number rather than Part Number (normally the same number as the MIDI channel). The Block number can be specified as one of 16 blocks, from $0(\mathrm{H})$ to $\mathrm{F}(\mathrm{H})$.
The relation between Part number and Block number is as follows.

x...BLOCK NUMBER (0-F),	Part 1 (MIDI ch = 1) $\mathrm{x}=1(\mathrm{H})$
	Part $2($ MIDI ch $=2$) $\mathrm{x}=2(\mathrm{H})$
	:
	Part 9 (MIDI ch = 9) $\mathrm{x}=9(\mathrm{H})$
	Part10 (MIDI ch $=10$) $\mathrm{x}=0(\mathrm{H})$
	Part11 (MIDI ch = 11) $\mathrm{x}=\mathrm{A}(\mathrm{H})$
	Part12 (MIDI ch $=12$) $\mathrm{x}=\mathrm{B}(\mathrm{H})$
	$: \quad: \quad:$
	Part16 (MIDI ch $=16$) $\mathrm{x}=\mathrm{F}(\mathrm{H})$

| Address (H) | $\underline{\text { Size }(\mathrm{H})}$ | $\underline{\text { Data }(\mathrm{H})}$ | $\underline{\text { Parameter }}$ | Description |
| :--- | :--- | :--- | :--- | :--- |\quad| Default Value (H) |
| :--- |
| 401×14 |

* ASSIGN MODE is the parameter that determines how voice assignment will be handled when sounds overlap on identical note numbers in the same channel (i.e., repeatedly struck notes). This is initialized to a mode suitable for each Part, so for general purposes there is no need to change this.

401×15	000001	00-02	USE FOR RHYTHM PART	$0=\mathrm{OFF}$	00 at $x \neq 0$	OFF at $\mathrm{x} \neq 0$
				1 = MAP1	01 at $x=0$	MAP1 at $\mathrm{x}=0$
				$2=$ MAP2		

* This parameter sets the Drum Map of the Part used as the Drum Part. FP-3 can simultaneously (in different Parts) use up to two Drum Maps (MAP1, MAP2). With the initial settings, Part10 (MIDI CH $=10, x=0$) is set to MAP1 (1), and other Parts are set to normal instrumental Parts (OFF (0)).

401×40	0000 0C	00-7F	SCALE TUNING C	$-64-+63$ [cent]	40	0 [cent]
40 1x 41\#		00-7F	SCALE TUNING C\#	-64-+63 [cent]	40	0 [cent]
40 1x 42\#		00-7F	SCALE TUNING D	-64-+63 [cent]	40	0 [cent]
$401 \mathrm{x} 43 \#$		00-7F	SCALE TUNING D\#	-64-+63 [cent]	40	0 [cent]
$401 \times 44 \#$		00-7F	SCALE TUNING E	-64-+63 [cent]	40	0 [cent]
40 1x 45\#		00-7F	SCALE TUNING F	-64-+63 [cent]	40	0 [cent]
40 1x 46\#		00-7F	SCALE TUNING F\#	-64-+63 [cent]	40	0 [cent]
$401 \times 47 \#$		00-7F	SCALE TUNING G	-64-+63 [cent]	40	0 [cent]
$401 \times 48 \#$		00-7F	SCALE TUNING G\#	-64-+63 [cent]	40	0 [cent]
$401 \times 49 \#$		00-7F	SCALE TUNING A	-64-+63 [cent]	40	0 [cent]
40 1x 4A\#		00-7F	SCALE TUNING A\#	-64-+63 [cent]	40	0 [cent]
$401 \mathrm{x} 4 \mathrm{~B} \#$		00-7F	SCALE TUNING B	-64-+63 [cent]	40	0 [cent]

* SCALE TUNING is a function that allows fine adjustment to the pitch of each note in the octave. The pitch of each identically-named note in all octaves will change simultaneously. A setting of ± 0 cent $(40 \mathrm{H})$ is equal temperament. Refer to section 4 . Supplementary material, "The Scale Tune Feature" (p. 8).
404×23
000002
$00-7 \mathrm{~F}$
PART EFX TYPE (MSB, LSB)
$0000-7 \mathrm{~F} 7 \mathrm{~F}$
0000
0
* This EFX type is same to EFX type of System Parameter. When this EFX type is same to EFX type of System parameter (see p. 5), the part is connected to EFX.
0 4x 25\#
000001
00-7F
PART EFX MACRO
0000
0
* When EFX type is set to Sympathetic Resonance, you can set the depth of the resonance level. The higher the setting is, the deeper the resonance becomes
* When the EFX type is set to Rotary, you can switch the rotary speed. (00H: Slow; 40H: Fast)

104×26\#
000001
$00-7 \mathrm{~F}$
PART EFX DEPTH
0000
0

Section 4. Supplementary material

oDecimal and Hexadecimal table

In MIDI documentation, data values and addresses/sizes of exclusive messages etc. are expressed as hexadecimal values for each 7 bits.
The following table shows how these correspond to decimal numbers.

Dec.	Hex.	Dec.	Hex.	Dec.	Hex.	Dec.	Hex.
00	0 H	32	20 H	64	40 H	96	60 H
1	01 H	33	21 H	65	41 H	97	61 H
2	02 H	34	22 H	66	42 H	98	62 H
3	03 H	35	23 H	67	43 H	99	63 H
4	04 H	36	24 H	68	44 H	100	64 H
5	05 H	37	25 H	69	45 H	101	65 H
6	06 H	38	26 H	70	46 H	102	66 H
7	07 H	39	27 H	71	47 H	103	67 H
8	08 H	40	28 H	72	48 H	104	68 H
9	09 H	41	29 H	73	49 H	105	69 H
10	0 H	42	2 AH	74	4 AH	106	6 AH
11	0 BH	43	2 BH	75	4 BH	107	6 BH
12	0 CH	44	2 CH	76	4 CH	108	6 CH
13	0 DH	45	2 DH	77	4 DH	109	6 DH
14	0 EH	46	2 EH	78	4 EH	110	6 EH
15	0 FH	47	2 FH	79	4 FH	111	6 FH
16	10 H	48	30 H	80	50 H	112	70 H
17	11 H	49	31 H	81	51 H	113	71 H
18	12 H	50	32 H	82	52 H	114	72 H
19	13 H	51	33 H	83	53 H	115	73 H
20	14 H	52	34 H	84	54 H	116	74 H
21	15 H	53	35 H	85	55 H	117	75 H
22	16 H	54	36 H	86	56 H	118	76 H
23	17 H	55	37 H	87	57 H	119	77 H
24	18 H	56	38 H	88	58 H	120	78 H
25	19 H	57	39 H	89	59 H	121	79 H
26	1 AH	58	3 AH	90	5 AH	122	7 AH
27	1 BH	69	3 BH	91	5 BH	123	7 BH
28	1 CH	60	3 CH	92	5 CH	124	7 CH
29	1 DH	61	3 DH	93	5 DH	125	7 DH
30	1 EH	62	3 EH	94	5 EH	126	7 EH
31	1 FH	63	3 FH	95	5 FH	127	7 FH

* Decimal values such as MIDI channel, bank select, and program change are listed as one (1) greater than the values given in the above table.

A 7-bit byte can express data in the range of 128 steps. For data where greater precision is required, we must use two or more bytes. For example, two hexadecimal numbers aa bbH expressing two 7 -bit bytes would indicate a value of aa $\times 128+\mathrm{bb}$.

* In the case of values which have $\mathrm{a} \pm$ sign, $00 \mathrm{H}=-64,40 \mathrm{H}= \pm 0$, and $7 \mathrm{FH}=+63$, so that the decimal expression would be 64 less than the value given in the above chart. In the case of two types, $0000 \mathrm{H}=-8192,4000 \mathrm{H}= \pm 0$, and $7 \mathrm{~F} 7 \mathrm{FH}=+8191$. For example if aa bbH were expressed as decimal, this would be aa $\mathrm{bbH}-4000 \mathrm{H}=\mathrm{aa} \times 128+\mathrm{bb}-64 \times 128$.
* Data marked "nibbled" is expressed in hexadecimal in 4-bit units. A value expressed as a 2-byte nibble 0 a 0 bH has the value of $\mathrm{a} \times 16+\mathrm{b}$.

<Example1> What is the decimal expression of 5AH?

From the preceding table, $5 \mathrm{AH}=90$

<Example2> What is the decimal expression of the value $12 \mathbf{3 4 H}$ given as

 hexadecimal for each 7 bits?From the preceding table, since $12 \mathrm{H}=18$ and $34 \mathrm{H}=52$
$18 \times 128+52=2356$
<Example3> What is the decimal expression of the nibbled value 0A 0309 0D?
From the preceding table, since $0 \mathrm{AH}=10,03 \mathrm{H}=3,09 \mathrm{H}=9,0 \mathrm{DH}=13$
$((10 \times 16+3) \times 16+9) \times 16+13=41885$

<Example4> What is the nibbled expression of the decimal value $1258 ?$

16) 1258
17) $78 \quad . .10$
18) $4 \quad \ldots 14$

Since from the preceding table, $0=00 \mathrm{H}, 4=04 \mathrm{H}, 14=0 \mathrm{EH}, 10=0 \mathrm{AH}$, the answer is 00040 E OAH.

-Examples of actual MIDI messages

<Example1> 92 3E 5F

9 n is the Note-on status, and n is the MIDI channel number. Since $2 \mathrm{H}=2,3 \mathrm{EH}=62$, and $5 \mathrm{FH}=95$, this is a Note-on message with MIDI $\mathrm{CH}=3$, note number 62 (note name is D 4), and velocity 95 .

<Example2> CE 24

CnH is the Program Change status, and n is the MIDI channel number. Since EH $=14$ and $24 \mathrm{H}=36$, this is a Program Change message with MIDI CH $=15$, program number 37 (Flute in FP-3).

<Example3> EA 0028

EnH is the Pitch Bend Change status, and n is the MIDI channel number. The 2nd byte $(00 \mathrm{H}$ $=0)$ is the LSB and the 3rd byte $(28 \mathrm{H}=40)$ is the MSB, but Pitch Bend Value is a signed number in which $4000 \mathrm{H}(=64 \times 128+0=8192)$ is 0 , so this Pitch Bend Value is $2800 \mathrm{H}-4000 \mathrm{H}=40 \times 128+0-(64 \times 128+0)=5120-8192=-3072$ If the Pitch Bend Sensitivity is set to 2 semitones, $-8192(0000 \mathrm{H})$ will cause the pitch to change -200 cents, so in this case $-200 \times(-3072) /(-8192)=-75$ cents of Pitch Bend is being applied to MIDI channel 11.

<Example4> B3 6400650006 0C 260064 7F 65 7F

BnH is the Control Change status, and n is the MIDI channel number. For Control Changes, the 2 nd byte is the control number, and the 3rd byte is the value. In a case in which two or more messages consecutive messages have the same status, MIDI has a provision called "running status" which allows the status byte of the second and following messages to b e omitted. Thus, the above messages have the following meaning.

B3 $6400 \quad$ MIDI ch.4, lower byte of RPN parameter number: 00 H
(B3) $6500 \quad$ (MIDI ch.4) upper byte of RPN parameter number: 00 H
(B3) 060 C (MIDI ch.4) upper byte of parameter value: 0 CH
(B3) 2600 (MIDI ch.4) lower byte of parameter value: 00 H
(B3) $647 \mathrm{~F} \quad$ (MIDI ch.4) lower byte of RPN parameter number: 7FH
(B3) $657 \mathrm{~F} \quad$ (MIDI ch.4) upper byte of RPN parameter number: 7FH

In other words, the above messages specify a value of 0 C 00 H for RPN parameter number 0000 H on MIDI channel 4, and then set the RPN parameter number to 7F 7FH.

RPN parameter number 0000 H is Pitch Bend Sensitivity, and the MSB of the value indicates semitone units, so a value of $0 \mathrm{CH}=12$ sets the maximum pitch bend range to ± 12 semitones (1 octave).

Once the parameter number has been specified for the RPN, all Data Entry messages transmitted on that same channel will be valid, so after the desired value has been transmitted, it is a good idea to set the parameter number to 7F 7FH to prevent accidents. This is the reason for the (B3) 647 F (B3) 657 F at the end.

It is not desirable for performance data (such as Standard MIDI File data) to contain many events with running status as given in <Example $4>$. This is because if playback is halted during the song and then rewound or fast-forwarded, the sequencer may not be able to transmit the correct status, and the sound source will then misinterpret the data. Take care to give each event its own status.

It is also necessary that the RPN parameter number setting and the value setting be done in the proper order. On some sequencers, events occurring in the same (or consecutive) clock may be transmitted in an order different than the order in which they were received. For this reason it is a good idea to slightly skew the time of each event (about 1 tick for TPQN = 96 , and about 5 ticks for TPQN $=480$).

* TPQN: Ticks Per Quarter Note

-Example of an Exclusive message and calculating a Checksum

Roland Exclusive messages are transmitted with a checksum at the end (before F7) to make sure that the message was correctly received. The value of the checksum is determined by the address and data (or size) of the transmitted exclusive message.

OHow to calculate the checksum (hexadecimal numbers are indicated by

 'H')The checksum is a value derived by adding the address, size and checksum itself and inverting the lower 7 bits.
Heres an example of how the check sum is calculated. We will assume that in the exclusive message we are transmitting, the address is aa bb ccH and the data or size is dd ee ffH.
$a a+b b+c c+d d+e e+f f=s u m$
sum / 128 = quotient.. remainder
128 - remainder $=$ checksum

<Example> Setting REVERB MACRO to type 3

According to the "Parameter Address Map," the REVERB MACRO Address is 4001 30H, and value is 03 H . Thus,
$\frac{\mathrm{F} 0}{(1)} \quad \frac{41}{(2)} \quad \frac{10}{(3)} \quad \frac{42}{(4)} \quad \frac{12}{(5)} \quad \underline{400130} \quad \frac{03}{\text { Address }} \quad \underline{? ?} \quad \frac{?}{\text { data }} \quad \frac{\mathrm{F} 7}{(6)}$
(1) Exclusive Status, (2) ID (Roland), (3) Device ID (17),
(4) Model ID, (5) Command ID (DT1), (6) End of Exclusive

Next we calculate the checksum
$40 \mathrm{H}+01 \mathrm{H}+30 \mathrm{H}+03 \mathrm{H}=64+1+48+3=116$ (sum)
116 (sum) / $128=0$ (quotient) ... 116 (remainder)
checksum $=128-116($ remainder $)=12=0 \mathrm{CH}$
This means that F0 4110421240013003 0C F7 is the message we transmit.

-About tuning

In MIDI, individual Parts are tuned by sending RPN \#1 (Master Fine Tuning) to the appropriate MIDI channel.
In MIDI, an entire device is tuned by either sending RPN \#1 to all MIDI channels being used, or by sending a System Exclusive MASTER TUNE (address 400000 H).
RPN \#1 allows tuning to be specified in steps of approximately 0.012 cents (to be precise, 100/8192 cent), and System Exclusive MASTER TUNE allows tuning in steps of 0.1 cent. One cent is $1 / 100$ th of a semitone.
The values of RPN \#1 (Master Fine Tuning) and System Exclusive MASTER TUNE are added together to determine the actual pitch sounded by each Part.
Frequently used tuning values are given in the following table for your reference. Values are in hexadecimal (decimal in parentheses).

Hz in A4	cent	RPN \#1	Sys.Ex. 40 00 00
445.0	+19.56	$4 \mathrm{C} 43(+1603)$	$00040 \mathrm{C} 04(+196)$
444.0	+15.67	$4 \mathrm{~A} 03(+1283)$	$0004090 \mathrm{D}(+157)$
443.0	+11.76	$4744(+964)$	$00040706(+118)$
442.0	+7.85	$4503(+643)$	$0004040 \mathrm{~F}(+79)$
441.0	+3.93	$4242(+322)$	$00040207(+39)$
440.0	0.00	$4000(0)$	$00040000(0)$
439.0	-3.94	3D 3D (-323)	$00030 \mathrm{D} 09(-39)$
438.0	-7.89	3A 7A (-646)	$00030 \mathrm{~B} 01(-79)$

<Example> Set the tuning of MIDI channel 3 to A4 $=442.0 \mathrm{~Hz}$
Send RPN\#1 to MIDI channel 3. From the above table, the value is 4503 H .
B2 6400 MIDI ch.3, lower byte of RPN parameter number: 00 H
(B2) 6501 (MIDI ch.3) upper byte of RPN parameter number: 01H
(B2) 0645 (MIDI ch.3) upper byte of parameter value: 45 H
(B2) 2603 (MIDI ch.3) lower byte of parameter value: 03 H
(B2) $647 \mathrm{~F} \quad$ (MIDI ch.3) lower byte of RPN parameter number: 7FH
(B2) $657 \mathrm{~F} \quad$ (MIDI ch.3) upper byte of RPN parameter number: 7FH

-The Scale Tune Feature (address: 40 1x 40)

The scale Tune feature allows you to finely adjust the individual pitch of the notes from C through B. Though the settings are made while working with one octave, the fine adjustments will affect all octaves. By making the appropriate Scale Tune settings, you can obtain a complete variety of tuning methods other than equal temperament. As examples, three possible types of scale setting are explained below.

OEqual Temperament

This method of tuning divides the octave into 12 equal parts. It is currently the most widely used form of tuning,
especially in occidental music. On FP-3, the default settings for the Scale Tune feature produce equal temperament.

OJust Temperament (Keytone C)

The three main chords resound much more beautifully than with equal temperament, but this benefit can only be obtained in one key. If transposed, the chords tend to become ambiguous. The example given involves settings for a key in which C is the keytone.

OArabian Scale

By altering the setting for Scale Tune, you can obtain a variety of other tunings suited for ethnic music. For example, the settings introduced below will set the unit to use the Arabian Scale.

Example Settings

Note name	Equal Temperament		Iust Temperament (Keytone C)	
Arabian Scale				
C	0	+14	-6	
C\#	0	-14	+45	
D	0	+18	-2	
D\#	0	+30	-12	
D	0	+2	-51	
E	0	+12	-8	
F	0	-16	+43	
F\#	0	+16	-4	
G	0	-12	+47	
G\#	0	0	0	
A	0	+32	-10	
A\#	0	+4	-49	

The values in the table are given in cents. Refer to the explanation of Scale Tuning on p. 6 to convert these values to hexadecimal, and transmit them as exclusive data.
For example, to set the tune (C-B) of the Part1 Arabian Scale, send the data as follows: F0 41104212401140 3A 6D 3E 34 0D 38 6B 3C 6F 4036 0F 50 F7

-Tone List

FP-3 TONE MAPPING

PC\# / CC0 / CC32	Tone Name	Voices	Notes
00h / 50h / 00h	Grand Piano 1	2-3	1-1
01h / 50h / 00h	Grand Piano 2	2-3	1-2
02h / 50h / 00h	Rock Piano	2-3	1-3
03h / 50h / 00h	Honky-tonk	2-3	1-4
04h / 50h / 00h	Upright Piano	1-2	1-5
05h / 50h / 00h	Harpsichord	1	1-6
06h / 50h / 00h	Stage Rhodes	2	2-1
07h / 50h / 00h	Dyno Rhodes	1	2-2
08h / 50h / 00h	E.Piano	2	2-3
09h / 50h / 00h	Suitcase	1	2-4
0Ah / 50h / 00h	Wurly	2	2-5
0Bh / 50h / 00h	Clavi	1	2-6
0Ch / 50h / 00h	Vibraphone	1	2-7
0Dh / 50h / 00h	Vibra Bell	2	2-8
0Eh / 50h / 00h	Jazz Organ	2	3-1
0Fh / 50h / 00h	Rock Organ	4	3-2
10h/50h / 00h	Full Organ	1	3-3
11h/50h / 00h	Lower Organ	1	3-4
12h / 50h / 00h	Church Organ	2	3-5
13h / 50h / 00h	Nason Flute 8'	1	3-6
14h / 50h / 00h	Acoustic Guitar	1	4-1
15h/50h / 00h	Jazz Guitar	1	4-2
16h/50h / 00h	Acoustic Bass	4	4-3
17h/50h / 00h	Acoustic Bass + Cymbal	2	4-4
18h/50h / 00h	Fingered Bass	1	4-5
19h/50h / 00h	Thum Voice	1	4-6
1Ah / 50h / 00h	Slow Strings	2	5-1
18h / 50h / 00h	Strings	2	5-2
1Ch / 50h / 00h	Warm JP Strings	2	5-3
1Dh / 50h / 00h	Holy Voice	4	5-4
1Eh / 50h / 00h	Sugar Key	2	5-5
1Fh / 50h / 00h	Harp	1	5-6
20h / 50h / 00h	Jazz Scat	1	6-1
21h / 50h / 00h	Rich Choir	2	6-2
22h / 50h / 00h	Dreamy Choir	2	6-3
23h / 50h / 00h	Alto Sax	2	6-4
24h/50h / 00h	Flute	1	6-5
25h/50h / 00h	Trumpet	1	6-6

FP-3 Drum MAPPING

PC\# / CCO / CC32	Drum Set Name	Notes
$03 \mathrm{~h} / 00 \mathrm{~h} / 40 \mathrm{~h}$	Pop Drum Set	$6-7$
$3 \mathrm{Fh} / 00 \mathrm{~h} / 40 \mathrm{~h}$	Vox Drum Set	$6-8$

* The tones which marked in Notes can be selected from panel.
+-------- Tone group nu
| +--- Page Number
| |
1-1

OTone groups number as follows,

> 1: Piano
> 2: E.Piano
> 3: Organ
> 4: Guitar/Bass
> 5: Strings/Pad
> 6: Voice/Winds

- MIDI Out Mode

You can select the MIDI data that will be output when you make tone changes on the FP-3's panel.
Additionally, performance data that has been recorded on the FP-3 can be sent out from the MIDI Out connector.
Please refer to the Owner's Manual for information on setting the MIDI Out Mode.

OMIDI Out Mode 1:

The MIDI messages shown below are output when you perform a tone change on the FP-3.
This setting is suitable when connecting a sequencer, and recording/playing performances

- Program Change/Bank Select
- Reverb Macro/Reverb Send Level
- Chorus Send Level
- System EFX Type/Part EFX Type/Part EFX Macro/Part EFX Depth

OMIDI Out Mode 2:

The MIDI messages listed above will NOT be output when you perform a tone change on the FP-3.
This mode is suitable when you don't want to change the tones or effects of a connected sound module when the FP-3 is operated.

OMIDI Out Mode 3:

When the FP-3 contains recorded performance data, the performance data is transmitted from the MIDI Out connector when the [Play] button on the FP-3 is pressed.
You can transmit the data recorded on the FP-3 to external devices, and play an external sound module.
In this mode, the same MIDI messages as those output in MIDI Out Mode 1 will be output when you perform a tone change on the FP-3.

Copyright © 2000 ROLAND CORPORATION
All right reserved. No part of this publication may reproduced in any form without the written permission of ROLAND CORPORATION.

[^0]: * The lower byte (1 llH) of Master Volume will be handled as 00 H

