
Using the ManuScript™ language

2

Edition 6
April 2009

Written by Jonathan Finn, James Larcombe, Yasir Assam, Simon Whiteside, Mike Copperwhite, Paul Walmsley, Graham Westlake
and Michael Eastwood, with contributions from Andrew Davis and Daniel Spreadbury.

Copyright © Avid Technology, Inc. 1997–2009.

3

Contents
Introduction.. 5

Tutorial 7
Edit Plug-ins.. 8
Loops ...12
Objects ... 14
Representation of a score ... 16
The “for each” loop... 18
Indirection, sparse arrays and user properties... 20
Dialog editor.. 24
Debugging your plug-ins.. 27
Storing and retrieving preferences ..28

Reference 33
Syntax .. 34
Expressions ... 36
Operators...38

Object Reference 39
Hierarchy of objects.. 40
All objects ..41
Bar.. 43
BarObject...49
BarRest .. 52
Clef ... 53
Comment...54
ComponentList ... 55
Component.. 56
DateTime...57
Dictionary..58
DynamicPartCollection .. 59
DynamicPart ...60
File.. 61
Folder...62
GuitarFrame.. 63
GuitarScaleDiagram ... 66
InstrumentChange..67
InstrumentTypeList.. 68
InstrumentType.. 69
HitPointList... 71
HitPoint ... 72
KeySignature ...73
Line .. 74
LyricItem ...75
NoteRest ..76
Note.. 79

4

PageNumberChange... 81
PluginList ..82
Plugin...83
RehearsalMark .. 84
Score ..85
Selection ..89
Sibelius... 92
SparseArray... 98
Staff ..100
Syllabifier...103
SymbolItem and SystemSymbolItem..104
SystemStaff, Staff, Selection, Bar and all BarObject-derived objects ..105
SystemStaff ..106
TextItem and SystemTextItem ..107
TimeSignature...108
TreeNode...109
Tuplet...110
Utils..111
VersionHistory..115
Version ..116
VersionComment ...117

Global constants 119

What’s new in Sibelius 6 142

Introduction

ManuScript™ is a simple, music-based programming language developed to write plug-ins for the Sibelius music processor. The
name was invented by Ben Sloman, a friend of Ben Finn’s.

It is based on Simkin, an embedded scripting language developed by Simon Whiteside, and has been extended by him and the rest
of the Sibelius team ever since. (Simkin is a spooky pet name for Simon sometimes found in Victorian novels.) For more informa-
tion on Simkin, and additional help on the language and syntax, go to the Simkin website at www.simkin.co.uk.

Rationale
In adding a plug-in language to Sibelius we were trying to address several different issues:

* Music notation is complex and infinitely extensible, so some users will sometimes want to add to a music notation program to
make it cope with these new extensions.

* It is useful to allow frequently repeated operations (e.g. opening a MIDI file and saving it as a score) to be automated, using a
system of scripts or macros.

* Certain more complex techniques used in composing or arranging music can be partly automated, but there are too many to
include as standard features in Sibelius.

There were several conditions that we wanted to meet in deciding what language to use:

* The language had to be simple, as we want normal users (not just seasoned programmers) to be able to use it.
* We wanted plug-ins to be usable on any computer, as the use of computers running both Windows and Mac OS is widespread in

the music world.
* We wanted the tools to program in the language to be supplied with Sibelius.
* We wanted musical concepts (pitch, notes, bars) to be easily expressed in the language.
* We wanted programs to be able to talk to Sibelius easily (to insert and retrieve information from scores).
* We wanted simple dialog boxes and other user interface elements to be easily programmed.

C/C++, the world’s “standard” programming language(s), were unsuitable as they are not easy for the non-specialist to use, they
would need a separate compiler, and you would have to recompile for each different platform you wanted to support (and thus
create multiple versions of each plug-in).

The language Java was more promising as it is relatively simple and can run on any platform without recompilation. However, we
would still need to supply a compiler for people to use, and we could not express musical concepts in Java as directly as we could
with a new language.

So we decided to create our own language that is interpreted so it can run on different platforms, integrated into Sibelius without
any need for separate tools, and can be extended with new musical concepts at any time.

The ManuScript language that resulted is very simple. The syntax and many of the concepts will be familiar to programmers of C/
C++ or Java. Built into the language are musical concepts (Score, Staff, Bar, Clef, NoteRest) that are instantly comprehensible.

Technical support
Since the ManuScript language is more the province of our programmers than our technical support team (who are not, in the
main, programmers), we can’t provide detailed technical help on it, any more than Sun will help you with Java programming. This
document and the sample plug-ins should give you a good idea of how to do some simple programming fairly quickly.

We would welcome any useful plug-ins you write – email them to daniel.spreadbury@avid.com and we may put them on our
web site; if we want to distribute the plug-in with Sibelius itself, we’ll pay you for it.

Mailing list for plug-in developers
There is a growing community of plug-in developers working with ManuScript, and they can be an invaluable source of help when
writing new plug-ins. To subscribe, send an email to majordomo@sibelius.com with the words subscribe plugin-dev in
the body of the email.

http://www.simkin.co.uk

6

Tutorial

Tutorial

8

Edit Plug-ins

A simple plug-in
Let’s start a simple plug-in. You are assumed to have some basic experience of programming (e.g. in BASIC or C), so you’re already
familiar with ideas like variables, loops and so on.

* Start Sibelius.
* Choose Plug-ins > Edit Plug-ins. The following dialog appears:

* Now click New.

* You are asked to type the internal name of your plug-in (used as the plug-in’s filename), the name that should appear on the
menu and the name of the category in which the plug-in should appear on the Plug-ins menu.
The reason for having two separate names for plug-ins is that filenames may be no longer than 31 characters on Macs running
Mac OS 9 (which is only significant if you intend your plug-in to be used with versions of Sibelius prior to Sibelius 4), but the
menu names can be as long as you like.

* Type Test as the internal name, Test plug-in as the menu name and Tests as the category name, then click OK.
* You’ll see Tests/Test (user copy) added to the list in the Edit Plug-ins dialog. Click Close. This shows the folder in which the

plug-in is located (Tests, which Sibelius has created for you), the filename of the plug-in (minus the standard .plg file exten-
sion), and (user copy) tells you that this plug-in is located in your user application data folder, not the Sibelius program folder
or application package itself.

* If you look in the Plug-ins menu again you’ll see a Tests submenu, with a Test plug-in inside it.
* Choose Plug-ins > Tests > Test and the plug-in will run. You may first be prompted that you cannot undo plug-ins, in which

case click Yes to continue (and you may wish to switch on the Don’t say this again option so that you’re not bothered by this
warning in future.) What does our new Test plug-in do? It just pops up a dialog which says Test (whenever you start a new
plug-in, Sibelius automatically generates in a one-line program to do this). You’ll also notice a window appear with a button that
says Stop Plug-in, which appears whenever you run any plug-in, and which can be useful if you need to get out of a plug-in
you’re working on that is (say) trapped in an infinite loop.

* Click OK on the dialog and the plug-in stops.

Edit Plug-ins

9

Three types of information
Let’s look at what’s in the plug-in so far. Choose Plug-ins > Edit Plug-ins again, then select Tests/Test (user copy) from the list
and click Edit (or simply double-click the plug-in’s name to edit it). You’ll see a dialog showing the three types of information that
can make up a plug-in:

* Methods: similar to procedures, functions or routines in some other languages.
* Dialogs: the layout of any special dialog boxes you design for your plug-in.
* Data: variables whose value is remembered between running the plug-in. You can only store strings in these variables, so

they’re useful for things like user-visible strings that can be displayed when the plug-in runs. For a more sophisticated approach
to global variables, ManuScript provides custom user properties for all objects – see User properties on page 21.

Methods
The actual program consists of the methods. As you can see, plug-ins normally have at least two methods, which are created auto-
matically for you when you create a new plug-in:

* Initialize: this method is called automatically whenever you start up Sibelius. Normally it does nothing more than add the
name of the plug-in to the Plug-ins menu, although if you look at some of the supplied plug-ins you’ll notice that it’s sometimes
also used to set default values for data variables.

* Run: this is called when you run the plug-in, you’ll be startled to hear (it’s like main() in C/C++ and Java). In other words,
when you choose Plug-ins > Tests > Test, the plug-in’s Run method is called. If you write any other methods, you have to call
them from the Run method - otherwise how can they ever do anything?

Click on Run, then click Edit (or you can just double-click Run to edit it). This shows a dialog where you can edit the Run method:

In the top field you can edit the name; in the next field you can edit the parameters (i.e. variables where values passed to the
method are stored); and below is the code itself:

Sibelius.MessageBox("Test");

Tutorial

10

This calls a method MessageBox which pops up the dialog box that says Test when you run the plug-in. Notice that the method
name is followed by a list of parameters in parentheses. In this case there’s only one parameter: because it’s a string (i.e. text) it’s in
double quotes. Notice also that the statement ends in a semicolon, as in C/C++ and Java. If you forget to type a semicolon, you’ll
get an error when the plug-in runs.

What is the role of the word Sibelius in Sibelius.MessageBox? In fact it’s a variable representing the Sibelius program; the
statement is telling Sibelius to pop up the message box (C++ and Java programmers will recognize that this variable refers to an
“object”). If this hurts your brain, we’ll go into it later.

Editing the code
Now try amending the code slightly. You can edit the code just like in a word processor, using the mouse and arrow keys, and you
can also also use Ctrl+X/C/V or XX/C/V for cut, copy and paste respectively. If you right-click (Windows) or Control-click (Mac)
you get a menu with these basic editing operations on them too.

Change the code to this:

x = 1;
x = x + 1;

Sibelius.MessageBox("1 + 1 = " & x);

You can check this makes sense (or, at least, some kind of sense) by clicking the Check syntax button. If there are any blatant
mistakes (e.g. missing semicolons) you’ll be told where they are.

Then close the dialogs by clicking OK, OK again then Close. Run your amended plug-in from the Plug-ins menu and a message
box with the answer 1 + 1 = 2 should appear.

How does it work? The first two lines should be obvious. The last line uses & to stick two strings together. You can’t use + as this
works only for numbers (if you try it in the example above, you’ll get an interesting answer!).

One pitfall: try changing the second line to:

x += 1;

then click Check syntax. You’ll get an error: this syntax (and the syntax x++) is allowed in various languages but not in Manu-
Script. You have to do x = x+1;.

Where plug-ins are stored
Plug-ins supplied with Sibelius are stored in the folder called Plugins inside the Sibelius program folder on Windows, and inside
the application package (or “bundle”) on Mac. It is not intended that end users should add extra plug-ins to these locations them-
selves, as we have provided a per-user location for plug-ins to be installed instead. When you create a new plug-in or edit an exist-
ing one, the new or modified plug-in will be saved into the per-user location (rather than modifying or adding to the plug-ins in
the program folder or bundle):

* On Windows, additional plug-ins are stored in subfolders at C:\Documents and Settings\username\Application
Data\Sibelius Software\Sibelius 5\Plugins.

* On Mac, additional plug-ins are stored in subfolders at /Users/username/Library/Application Support/Sibelius Software/
Sibelius 5/Plugins.

This is worth knowing if you want to give a plug-in to someone else. The plug-ins appear in subfolders which correspond to the
submenus in which they appear in the Plug-ins menu. The filename of the plug-in itself is the plug-in’s internal name plus the
.plg extension, e.g. Test.plg.

Line breaks and comments
As with C/C++ and Java, you can put new lines wherever you like (except in the middle of words), as long as you remember to put
a semicolon after every statement. You can put several statements on one line, or put one statement on several lines.

You can add comments to your program, again like C/C++ and Java. Anything after // is ignored to the end of the line. Anything
between /* and */ is ignored, whether just part of a line or several lines:

// comment lasts to the end of the line
/* you can put

Edit Plug-ins

11

several lines of comments here
*/

For instance:

Sibelius.MessageBox("Hi!"); // print the active score

or:

Sibelius /* this contains the application */ .MessageBox("Hi!");

Variables
x in the Test plug-in is a variable. In ManuScript a variable can be any sequence of letters, digits or _ (underscore), as long as it
doesn’t start with a digit.

A variable can contain an integer (whole number), a floating point number, a string (text) or an object (e.g. a note) – more about
objects in a moment. Unlike most languages, in ManuScript a variable can contain any type of data – you don’t have to declare
what type you want. Thus you can store a number in a variable, then store some text instead, then an object. Try this:

x = 56; x = x+1;
Sibelius.MessageBox(x); // prints '57' in a dialog box
x = "now this is text"; // the number it held is lost
Sibelius.MessageBox(x); // prints 'now this is text' in a dialog
x = Sibelius.ActiveScore; // now it contains a score
Sibelius.MessageBox(x); // prints nothing in a dialog

Variables that are declared within a ManuScript method are local to that method; in other words, they cannot be used by other
methods in the same plug-in. Global Data variables defined using the plug-in editor can be accessed by all methods in the plug-
in, and their values are preserved over successive uses of the plug-in.

A quick aside about strings in ManuScript is in order at this point. Like many programming languages, ManuScript strings uses
the back-slash \ as an “escape character” to represent certain special things. To include a single quote character in your strings,
use \', and to include a new line you should use \n. Because of this, to include the backslash itself in a ManuScript string one has
to write \'.

Converting between numbers, text and objects
Notice that the method MessageBox is expecting to be sent some text to display. If you give it a number instead (as in the first
call to MessageBox above) the number is converted to text. If you give it an object (such as a score), no text is produced.

Similarly, if a calculation is expecting a number but is given some text, the text will be converted to a number:

x = 1 + "1"; // the + means numbers are expected
Sibelius.MessageBox(x); // displays '2'

If the text doesn’t start with a number (or if the variable contains an object instead of text), it is treated as 0:

x = 1 + "fred";
Sibelius.MessageBox(x); // displays ‘1’

Tutorial

12

Loops

“for” and “while”
ManuScript has a while loop which repeatedly executes a block of code until a certain expression becomes True. Create a new
plug-in called Potato. This is going to amuse one and all by writing the words of the well-known song “1 potato, 2 potato, 3
potato, 4”. Type in the following for the Run method of the new plug-in:

x = 1;
while (x<5)
{

text = x & " potato,";
Sibelius.MessageBox(text);
x = x+1;

}

Run it. It should display “1 potato,” “2 potato,” “3 potato,” “4 potato,” which is a start, though annoyingly you have to click OK after
each message.

The while statement is followed by a condition in () parentheses, then a block of statements in { } braces (you don’t need a
semicolon after the final } brace). While the condition is true, the block is executed. Unlike some other languages, the braces are
compulsory (you can’t omit them if they only contain one statement). Moreover, each block must contain at least one statement.
We did say that ManuScript was a simple language.

In this example you can see that we are testing the value of x at the start of the loop, and increasing the value at the end. This com-
mon construct could be expressed more concisely in ManuScript by using a for loop. The above example could also be written as
follows:

for x = 1 to 5
{

text = x & " potato,";
Sibelius.MessageBox(text);

}

Here, the variable x is stepped from the first value (1) up to the end value (5), stopping one step before the final value. By default,
the “step” used is 1, but we could have used (say) 2 by using the syntax for x = 1 to 5 step 2 , which would then print
only “1 potato” and “3 potato”!

Notice the use of & to add strings. Because a string is expected on either side, the value of x is turned into a string.

Notice also we’ve used the Tab key to indent the statements inside the loop. This is a good habit to get into as it makes the struc-
ture clearer. If you have loops inside loops you should indent the inner loops even more.

The if statement
Now we can add an if statement so that the last phrase is just “4,” not “4 potato”:

x = 1;
while (x<5)
{

if(x=4)
{

text = x & ".";
}
else
{

text = x & " potato,";
}
Sibelius.MessageBox(text);
x = x+1;

}

Loops

13

The rule for if takes the form if (condition) {statements}. You can also optionally add else {statements}, which is exe-
cuted if the condition is false. As with while, the parentheses and braces are compulsory, though you can make the program
shorter by putting braces on the same line as other statements:

x = 1;
while (x<5)
{

if(x=4) {
text = x & ".";

} else {
text = x & " potato,";

}
Sibelius.MessageBox(text);
x = x+1;

}

The position of braces is entirely a matter of taste.

Now let’s make this plug-in really cool. We can build up the four messages in a variable called text, and only display it at the end,
saving valuable wear on your mouse button. We can also switch round the if and else blocks to show off the use of not. Finally,
we return to the for syntax we looked at earlier.

text = ""; // start with no text
for x = 1 to 5
{

if (not(x=4)) {
text = text & x & " potato, "; // add some text

} else {
text = text & x & "."; // add no. 4

}
}

Sibelius.MessageBox(text); // finally display it

Arithmetic
We’ve been using + without comment, so here’s a complete list of the available arithmetic operators:

ManuScript evaluates operators strictly from left-to-right, unlike many other languages; so 2+3*4 evaluates to 20, not 14 as you
might expect. To get the answer 20, you’d have to write 2+(3*4).

ManuScript also supports floating point numbers, so whereas in some early versions 3/2 would work out as 1, it now evaluates to
1.5. Conversion from floating point numbers to integers is achieved with the RoundUp(expr), RoundDown(expr) and
Round(expr)functions, which can be applied to any expression.

a + b add
a - b subtract
a * b multiply
a / b divide
a % b remainder
-a negate
(a) evaluate first

Tutorial

14

Objects

Now we come to the neatest aspect of object-oriented languages like ManuScript, C++ or Java, which sets them apart from tradi-
tional languages like BASIC, Fortran and C. Variables in traditional languages can hold only certain types of data: integers, float-
ing point numbers, strings and so on. Each type of data has particular operations you can do to it: numbers can be multiplied and
divided, for instance; strings can be added together, converted to and from numbers, searched for in other strings, and so on. But
if your program deals with more complex types of data, such as dates (which in principle you could compare using =, < and >,
convert to and from strings, and even subtract) you are left to fend for yourself.

Object-oriented languages can deal with more complex types of data directly. Thus in the ManuScript language you can set a vari-
able, let’s say thischord, to be a chord in your score, and (say) add more notes to it:

thischord.AddNote(60); // adds middle C (note no. 60)
thischord.AddNote(64); // adds E (note no. 64)

If this seems magic, it’s just analogous to the kind of things you can do to strings in BASIC, where there are very special operations
which apply to text only:

A$ = "1"
A$ = A$ + " potato, ": REM add strings
X = ASC(A$): REM get first letter code

In ManuScript you can set a variable to be a chord, a note in a chord, a bar, a staff or even a whole score, and do things to it. Why
would you possibly want to set a variable to be a whole score? So you can save it or add an instrument to it, for instance.

Objects in action
We’ll have a look at how music is represented in ManuScript in a moment, but for a little taster, let’s plunge straight in and adapt
Potato to create a score:

x = 1;
text = ""; // start with no text
while (x<5)
{

if (not(x=4)) {
text = text & x & " potato, "; // add some text

} else {
text = text & x & "."; // add no. 4

}
x = x+1;

}

Sibelius.New(); // create a new score
newscore = Sibelius.ActiveScore; // put it in a variable
newscore.CreateInstrument("Piano");
staff = newscore.NthStaff(1); // get top staff
bar = staff.NthBar(1); // get bar 1 of this staff
bar.AddText(0,text,"Technique"); // use Technique text style

This creates a score with a Piano, and types our potato text in bar 1 as Technique text.

The code uses the period (.) several times, always in the form variable.variable or variable.method(). This shows
that the variable before the period has to contain an object.

* If there’s a variable name after the period, we’re getting one of the object’s sub-variables (called “fields” or “member variables” in
some languages). For instance, if n is a variable containing a note, then n.Pitch is a number representing its MIDI pitch (e.g.
60 for middle C), and n.Name is a string describing its pitch (e.g. “C4” for middle C). The variables available for each type of
object are listed later.

* If there’s a method name after the period (followed by () parentheses), one of the methods allowed for this type of object is
called. Typically a method called in this way will either change the object or return a value. For instance, if s is a variable con-

Objects

15

taining a score, then s.CreateInstrument("Flute") adds a flute (changing the score), but s.NthStaff(1) returns
a value, namely an object containing the first staff.

Let’s look at the new code in detail. There is a pre-defined variable called Sibelius, which contains an object representing the Sibel-
ius program itself. We’ve already seen the method Sibelius.MessageBox(). The method call Sibelius.New() tells
Sibelius to create a new score. Now we want to do something to this score, so we have to put it in a variable.

Fortunately, when you create a new score it becomes active (i.e. its title bar highlights and any other scores become inactive), so
we can just ask Sibelius for the active score and put it in a variable:

newscore = Sibelius.ActiveScore.

Then we can tell the score to create a Piano: newscore.CreateInstrument("Piano"). But to add some text to the
score you have to understand how the layout is represented.

Tutorial

16

Representation of a score

A score is treated as a hierarchy: each score contains 0 or more staves; each staff contains bars (though every staff contains the
same number of bars); and each bar contains “bar objects.” Clefs, text and chords are all different types of bar objects.

So to add a bar object (i.e. an object which belongs to a bar), such as some text, to a score: first you have to get which staff you
want (and put it in a variable): staff = newscore.NthStaff(1); then you have to get which bar in that staff you want
(and put it in a variable): bar = staff.NthBar(1); finally you tell the bar to add the text: bar.Add-
Text(0,text,"Technique"). You have to give the name (or index number – see Text styles on page 121) of the text style
to use (and it has to be a staff text style, because we’re adding the text to a staff).

Notice that bars and staves are numbered from 1 upwards; in the case of bars, this is irrespective of any bar number changes that
are in the score, so the numbering is always unambiguous. In the case of staves, the top staff is no.1, and all staves are counted,
even if they’re hidden. Thus a particular staff has the same number wherever it appears in the score.

The AddText method for bars is documented later, but the first parameter it takes is a rhythmic position in the bar. Each note in
a bar has a rhythmic position that indicates where it is (at the start, one quarter after the start, etc.), but the same is true for all
other objects in bars. This shows where the object is attached to, which in the case of Technique text is also where the left hand
side of the text goes. Thus to put our text at the start of the bar, we used the value 0. To put the text a quarter note after the start of
the bar, use 256 (the units are 1024th notes, so a quarter is 256 units – but don’t think about this too hard):

bar.AddText(256,text,"Technique");

To avoid having to use obscure numbers like 256 in your program, there are predefined variables representing different note val-
ues (which are listed later), so you could write:

bar.AddText(Quarter,text,"Technique");

or to be quaint you could use the British equivalent:

bar.AddText(Crotchet,text,"Technique");

For a dotted quarter, instead of using 384 you can use another predefined variable:

bar.AddText(DottedQuarter,text,"Technique");

or add two variables:

bar.AddText(Quarter+Eighth,text,"Technique");

This is much clearer than using numbers.

The system staff
As you know from using Sibelius, some objects don’t apply to a single staff but to all staves. These include titles, tempo text,
rehearsal marks and special barlines; you can tell they apply to all staves because (for instance) they get shown in all the instru-
mental parts.

All these objects are actually stored in a hidden staff, called the system staff. You can think of it as an invisible staff which is always
above the other staves in a system. The system staff is divided into bars in the same way as the normal staves. So to add the title
“Potato” to our score we’d need the following code in our plug-in:

sys = newscore.SystemStaff; // system staff is a variable
bar = sys.NthBar(1);
bar.AddText(0,"POTATO SONG","Subtitle");

As you can see, SystemStaff is a variable you can get directly from the score. Remember that you have to use a system text
style (here I’ve used Subtitle) when putting text in a bar in the system staff. A staff text style like Technique won’t work. Also, you
have to specify a bar and position in the bar; this may seem slightly superfluous for text centered on the page as titles are (though
in reality even this kind of page-aligned text is always attached to a bar), but for Tempo and Metronome mark text they are obvi-
ously required.

Representation of a score

17

Representation of notes, rests, chords and other musical items
Sibelius represents rests, notes and chords in a consistent way. A rest has no noteheads, a note has 1 notehead and a chord has 2 or
more noteheads. This introduces an extra hierarchy: most of the squiggles you see in a score are actually a special type of bar
object that can contain even smaller things (namely, noteheads). There’s no overall name for something which can be a rest, note
or chord, so we’ve invented the pretty name NoteRest. A NoteRest with 0, 1 or 2 noteheads is what you normally call a rest, a note
or a chord, respectively.

If n is a variable containing a NoteRest, there is a variable n.NoteCount which contains the number of notes, and n.Dura-
tion which is the note-value in 1/256ths of a quarter. You can also get n.Highest and n.Lowest which contain the highest
and lowest notes (assuming n.NoteCount isn’t 0). If you set lownote = n.Lowest, you can then find out things about the
lowest note, such as lownote.Pitch (a number) and lownote.Name (a string). Complete details about all these methods
and variables may be found in the Reference section below.

Other musical objects, such as clefs, lines, lyrics and key signatures have corresponding objects in ManuScript, which again have
various variables and methods available. For example, if you have a Line variable ln, then ln.EndPosition gives the rhyth-
mic position at which the line ends.

Tutorial

18

The “for each” loop

It’s a common requirement for a loop to do some operation to every staff in a score, or every bar in a staff, or every BarObject in a
bar, or every note in a NoteRest. There are other more complex requirements which are still common, such as doing an operation
to every BarObject in a score in chronological order, or to every BarObject in a multiple selection. ManuScript has a for each
loop that can achieve each of these in a single statement.

The simplest form of for each is like this:

thisscore = Sibelius.ActiveScore;
for each s in thisscore // sets s to each staff in turn
{

// ...do something with s
}

Here, since thisscore is a variable containing a score, the variable s is set to be each staff in thisscore in turn. This is
because staves are the type of object at the next hierarchical level of objects (see Hierarchy of objects on page 40). For each
staff in the score, the statements in {} braces are executed.

Score objects contain staves, as we have seen, but they can also contain a Selection object, e.g. if the user has selected a passage of
music before running the plug-in. The Selection object is a special case: it is never returned by a for each loop, because there is
only a single selection object; if you use the Selection object in a for each loop, by default it will return BarObjects (not Staves,
Bars or anything else!).

Let’s take another example, this time for notes in a NoteRest:

noterest = bar.NthBarObject(1);
for each n in noterest // sets n to each note in turn
{

Sibelius.MessageBox("Pitch is " & n.Name);
}

n is set to each note of the chord in turn, and its note name is displayed. This works because Notes are the next object down the
hierarchy after NoteRests. If the NoteRest is, in fact, a rest (rather than a note or chord), the loop will never be executed – you
don’t have to check this separately.

The same form of loop will get the bars from a staff or system staff, and the BarObjects from a bar. These loops are often nested, so
you can, for instance, get several bars from several staves.

This first form of the for each loop got a sequence of objects from an object in the next level of the hierarchy of objects. The
second form of the for each loop lets you skip levels of the hierarchy, by specifying what type of object you want to get. This
saves a lot of nested loops:

thisscore = Sibelius.ActiveScore;
for each NoteRest n in thisscore
{

n.AddNote(60); // add middle C
}

By specifying NoteRest after for each, Sibelius knows to produce each NoteRest in each bar in each staff in the score; other-
wise it would just produce each staff in the score, because a Staff object is the type of object at the next hierarchical level of objects.
The NoteRests are produced in a useful order, namely from the top to the bottom staff, then from left to right through the bars.
This is chronological order. If you want a different order (say, all the NoteRests in the first bar in every staff, then all the NoteRests
in the second bar in every staff, and so on) you’ll have to use nested loops.

So here’s some useful code that doubles every note in the score in octaves:

The “for each” loop

19

score = Sibelius.ActiveScore;
for each NoteRest chord in score
{

if(not(chord.NoteCount = 0)) // ignore rests
{

note = chord.Highest; // add above the top note
chord.AddNote(note.Pitch+12); // 12 is no. of half-steps (semitones)

}
}

It could easily be amended to double in octaves only in certain bars or staves, only if the notes have a certain pitch or duration, and
so on.

This kind of loop is also very useful in conjunction with the user’s current selection. This selection can be obtained from a variable
containing a Score object as follows:

selection = score.Selection;

We can then test whether it’s a passage selection, and if so we can look at (say) all the bars in the selection by means of a for
each loop:

if (selection.IsPassage)
{

for each Bar b in selection
{

// do something with this bar
…

}
}

Be aware that you can not add or remove items from bars during iterating. The example of adding notes to chords above is fine
because you are modifying an existing item (in this case a NoteRest), but it’s not safe to add or remove entire items, and if you try
to do so, your plug-in will abort with an error. However, it’s very useful to add or remove items from bars, so you need to do that in
a separate for loop, after first collecting the items you want to operate on into a ManuScript array, something like this:

num = 0;
for each obj in selection
{
 if (IsObject(obj))
 {
 n = "obj" & num;
 @n = obj;
 num = num + 1;
 }
}
selection.Clear();
for i = 0 to num
{
 n = "obj" & i;
 obj = @n; // get an object from the pseudo array
 obj.Select();
}

The @n in this example is the array. To find out more about arrays, read on.

Tutorial

20

Indirection, sparse arrays and user properties

Indirection
If you put the @ character before a string variable name, then the value of the variable is used as the name of a variable or method.
For instance:

var="Name";
x = @var; // sets x to the contents of the variable Name

mymethod="Show";
@mymethod(); // calls the method Show

This has many advanced uses, though if taken to excess it can cause the brain to hurt. For instance, you can use @ to simulate
“unlimited” arrays. If name is a variable containing the string "x1", then @name is equivalent to using the variable x1 directly.
Thus:

i = 10;
name = "x" & i;
@name = 0;

sets variable x10 to 0. The last two lines are equivalent to x[i] = 0; in the C language. This has many uses; however, you’ll
also want to consider using the built-in arrays (and hash tables), which are documented below.

Sparse arrays
The method described above can be used to create “fake” arrays through indirection, though this is a little fiddly. ManuScript also
provides Javascript-style sparse arrays, which can store anything that can be stored in a ManuScript variable, including references
to objects. Like a variable, storing a reference to an object in a sparse array will preserve the lifetime of that object (because objects
are reference counted), but the underlying object in Sibelius may become invalid if (say) a Score is modified.

To create a sparse array in ManuScript, use the built-in method CreateSparseArray(a1,a2,a3,a4...an). You can create an
empty array simply by passing in no variables to the CreateSpareArray method.

Sparse arrays provide a read/write variable called Length that returns or sets the length of the array: when you set Length to a
number greater than the present size of the array, the array is padded with null values; if you set Length to a number smaller
than the present size of the array, any values beyond this number are removed.

To push one or more values to the end of the array, use the method Push(a1, a2, ... an). To remove and return the last element
of an array, use the method Pop().

An example of how to use a sparse array:

array = CreateSparseArray(4,5,6);
array[10] = 19; // creates 11th element of array, intervening elements are null
array.Length = 20; // extends array to 20 elements, new elements are all null

Sparse arrays by their nature may not have values in every array element. To return a new sparse array containing only the
populated indices of the original sparse array (i.e. those that are not null), use the array’s ValidIndices() method. For
example, using the above sparse array:

array2 = array.ValidIndices(); // will contain values 0, 1, 2, 10 and 19
return array[array2[0]]; // returns the first populated element of array

You can compare two sparse arrays for equality, e.g.:

if (array = array2) {
// do something

}

To access the end of an array, it’s convenient to use negative indices; e.g. array[-1] returns the last element, array[-2]
returns the penultimate element, and so on. It’s not possible to access elements before the start of the array, so if you do e.g.
array[-100] on a six element array, you will get array[0] returned.

Indirection, sparse arrays and user properties

21

Some things to remember when using sparse arrays:

* Sparse arrays use a zero-based index.
* Elements that have not been initialised are null, and do not cause an error when referenced.
* Assigning to an index beyond the current length increases the Length to one greater than the index assigned to.
* If an array contains references to objects, whether the arrays are equal or not depends on the implementation of equality for

those objects.

User properties
Most ManuScript objects, including objects created by Sibelius, can have user properties attached to them, allowing for conve-
nient storage of extra data, encapsulation of several items of data within a single object, and returning more than one value from a
method, among other things.

To create a new user property, use the following syntax:

object._property:property_name = value;

where object is the name of the object, property_name is the desired user property name, and value is the value to be assigned to
the new user property. User properties are read/write and can be accessed as object.property_name.

To get a sparse array containing the names of all the user properties belonging to an object, you can do e.g.:

names = object._propertyNames;

Here is an example of creating a user property:

nr = bar.NoteRest;
nr._property:original = true;
if (nr.original = true) {

// do something
}

Some things to remember when using user properties:

* If you attempt to get or set a user property that has not yet been created, your plug-in will exit with a run-time error.
* To check whether or not a user property has been created without causing a run-time error, use the notation

object._property:property_name, which will be null if no matching user property has been created yet.
* User properties cannot be created or accessed for normal data types (e.g. strings, integers, etc.), the global Sibelius object,

old-style ManuScript arrays created by CreateArray(), old-style hashes created by CreateHash(), and null.
* User properties that conflict with an existing property name cannot be accessed as object.property_name (though they can

be accessed using the ._property: notation).
* User properties belong to a particular ManuScript object and disappear when that object’s lifetime ends. To stop an object

dying, you can (for example) store it in a sparse array, but be aware that its contents may become invalid if (say) the underlying
score changes.

Dictionary
Dictionary is a programmer extensible object, simply allowing the use of user properties as above with convenient
construction. It also has methods allowing the use of aribtrarily named user properties, and can also have methods in plug-ins
attached to it allowing the creation of encapsulated user objects (i.e. objects with variables and methods attached to them).

To create a dictionary, use the built-in function CreateDictionary(name1, value1, name2, value2, ... nameN, valueN).
This creates a dictionary containing user properties called name1, name2, nameN with values value1, value2, valueN respectively.

A dictionary can contain named data items (like a struct in languages like C++), or data that is indexed by string, so that you
can use strings to look items up within it.

The values in a dictionary can be accessed using square bracket notation, so you can use a dictionary like a hash table, e.g.:

test = CreateDictionary("fruit",apple,"vegetable",potato);
test["fruit"] = banana;
test["meat"] = lamb;

Tutorial

22

You can even put other objects, e.g. sparse arrays, inside dictionaries, e.g.

test2 = CreateDictionary("fruit", CreateSparseArray(apple,banana,orange));

You can access the user properties within a dictionary using the ._property: notation, e.g.:

return test2._property:fruit;

which would return the array specified above. Even more direct, you can access user properties in a dictionary as if they were
variables or methods, like this:

test2.fruit;

which would also return the array specified above. You can also return more than one value from any ManuScript method using a
dictionary, e.g.:

getChord()
value = CreateDictionary("a", aNote, "b", anotherNote);
return value;

//... in another method somewhere
chord = getChord();
trace(chord.a);
trace(chord.b);

which returns two values, a and b, which you can access via e.g. chord.a and chord.b.

You can compare two dictionaries for equality, e.g.:

if (test2 = test3) {
 // do something
}

Whether or not dictionaries containing objects evaluate as equal depends on the implementation of equality for those objects.

If you’re comfortable with programming in general, you may find it useful to be able to add methods to dictionaries, particularly
if you are writing code designed to act as a library for other methods or plug-ins to call. Writing code in this way provides a degree
of encapsulation and can make it easy for client code to use your library.

To add a method to a dictionary, call the dictionary’s SetMethod() method, e.g.:

pluginmethod "(obj,x,y) {
 // a method that does something to obj
}"
test4 = CreateDictionary();
test4.SetMethod("doSomething",Self,"pluginmethod");
test4.doSomething(3,4); // call pluginmethod within the current plug-in, passing in
 // test4 (obj in the method above) and 3 (x in the method
 // above) and 4 (y in the method above)

In the example above, doSomething is the name of the method belonging to the dictionary, Self tells the plug-in that the
method is defined in the same plug-in, and pluginmethod is the name of a method elsewhere in the plug-in (shown at the top
of the example).

To return a sparse array containing the names of the methods belonging to a dictionary, use the dictionary’s
GetMethodNames() method. You can also check the existence of a particular method using the dictionary’s
MethodExists() method. Use the dictionary’s CallMethod() method to call a specific method, where the name of the
method is the first parameter, and any parameters to be passed to the specified method follow. For example:

array = test4.GetMethodNames(); // create sparse array containing method names
first_method_name = array[0]; // sets first_method_name to name of first method
methodfound = test4.MethodExists("doSomething"); // returns True in this case;
test4.CallMethod("doSomething",5,6);

Everything you put into a dictionary is a user property, so all of the methods outlined in User properties above can be used on
data in dictionaries too.

Indirection, sparse arrays and user properties

23

Using user properties as global variables
You can store SparseArray and Dictionary objects, and indeed any other object, as user properties of the Plugin object
itself. In the example below, Self is the object that corresponds to the running plug-in, and a user property globalData is
assigned to the plug-in, containing a Dictionary:

Self._property:globalData = CreateDictionary(1,2,3,4);
// globalData and Self.globalData can be used interchangeably
trace(globalData);
trace(Self.globalData);

User properties assigned to the plug-in are persistent between invocations. Take care to ensure that these user properties are
created before you attempt to use them, otherwise your plug-in will abort with a run-time error. Using the
_property:property_name syntax never causes run-time errors, but direct references to property_name force a runtime error
if property_name hasn't been created yet.

The example below shows how to test the existence of a specific user property, globalCounter, initialise it to 0 if it is not
found, then increment it by 1 every time the plug-in runs:

// Test the persistence of user properties
if (Self._property:globalCounter = null) {
 Self._property:globalCounter = 0;
}
globalCounter = globalCounter + 1;
// this number increases by one every time the plugin is run
trace(globalCounter);
trace(Self.globalCounter);

If you store a reference to a musical object in a user property that is assigned to the plug-in, there is an increased danger of that
reference becoming invalid due to the score being closed or edited, etc. Use the IsValid() method to validate such data before
using it.

User properties of plug-ins will be inaccessible (except by using the _property:property_name syntax) if there is an existing
global variable of the same name.

Watch out for recursive cycles!
Be careful not to create recursive cycles using arrays, user properties and dictionaries. When you use, say, an array in a dictionary,
you are not creating a copy of the array or its values, but a reference to the original array: dictionaries and arrays are objects, not
values. As a result, you could write something where an array contains a dictionary that itself refers to the original array: this will
lead to Sibelius crashing. So be careful!

Tutorial

24

Dialog editor

Dialog editor is only available in Sibelius for Windows.

For more complicated plug-ins than the ones we’ve been looking at so far, it can be useful to prompt the user for various settings
and options. This may be achieved by using ManuScript’s simple built-in dialog editor (which unfortunately is only available in
the Windows version of Sibelius). Dialogs can be created in the same way as methods and data variables in the plug-in editor –
just select Dialogs, and click Add.

To show a dialog from a ManuScript method, we use the built-in call

Sibelius.ShowDialog(dialogName, Self);

where dialogName is the name of the dialog we wish to show, and Self is a “special” variable referring to this plug-in (telling
Sibelius who the dialog belongs to). Control will only be returned to the method once the dialog has been closed by the user.

Of course, this is of little use unless we can edit the appearance of the dialog. To see how this editor works, edit the supplied Add
String Fingering plug-in, select the dialog called window, and click Edit. The plug-in’s dialog will then appear, along with a long
thin “palette” of available controls, as follows:

The Add String Fingering dialog doesn’t use all of the available types of controls, but it does demonstrate four of these types,
namely checkboxes, static text, combo boxes and buttons. Each control in the dialog can be selected for editing simply by clicking
on it; small black “handles” will appear, which allow the control to be resized. Controls can be moved around the dialog simply by
clicking and dragging. To create new controls, drag one of the icons from the control palette over to the dialog itself, and a new
control of that type will be created.

The most useful feature of the dialog editor is the Properties window that can be accessed by right-
clicking and choosing Properties from the pop-up menu, as shown on the right. With no controls
selected, this will allow you to set various options about the dialog itself, such as height, width and
title. With a control selected, the properties window varies depending on the type of the control, but
most of the options are common to all controls, and these are as follows:

* Text: the text appearing in the control
* Position (X, Y): where the control appears in the dialog, in coordinates relative to the top left-

hand corner
* Size (width, height): the size of the control
* Variable storing control’s value: the ManuScript Data variable that will correspond to the value of this control when the

plug-in is run
* Method called when clicked: the ManuScript method that should be called whenever the user clicks on this control (leave

blank if you don’t need to know about users clicking on the control)
* Click closes dialog: select this option if you want the dialog to be closed whenever the user clicks on this control. The addi-

tional options Returning True / False specify the value that the Sibelius.ShowDialog method should return when the
window is closed in this way.

Radio button
Checkbox
Button
Static text
Editable text
Combo box
List box
Group box

Dialog editor

25

* Give this control focus: select this option if the “input focus” should be given to this control when the dialog is opened, i.e. if
this should be the control to which the user’s keyboard applies when the dialog is opened. Mainly useful for editable text con-
trols.

Combo-boxes and list-boxes have an additional property; you can set a variable from which the control’s list of values should be
taken. Like the value storing the control’s current value, this should be a global Data variable. However, in this instance they have
a rather special format, to specify a list of strings rather than simply a single string. Look at the variable _ComboItems in Add
String Fingering for an example - it looks like this:

_ComboItems
{

 "1"
 "2"
 "3"
 "4"
 "1 and 3"
 "2 and 4"

}

Radio buttons also have an additional property (in Sibelius 2.1 and later) that allows one to specify groups of radio buttons in
plug-in dialogs. When the user clicks on a radio button in a group, only the other radio buttons belonging to that groups are dese-
lected; any others in the dialog are left as they are. This is extremely useful for more complicated dialogs. For instance, the Add
Chord Symbols plug-in uses this feature.

To specify a radio group, pick one control from each group that represents the first button of the group, and for these controls
ensure that the checkbox Start a new radio group is selected in the control’s Properties dialog. Then set the creation order of the
controls by clicking Set Creation Order in the menu obtained by right-clicking over the plug-in dialog. Enabling this will show a
number over each control, corresponding to the order in which they are created when the dialog is opened. This can be changed
by clicking over each control in the order you want them to be created. A radio button group is defined as being all the radio but-
tons created between two buttons that have the Start a new radio group flag set (or between one of these buttons and the end of
the dialog). So to make the radio groups work properly, ensure that each group is created in order, with the button at the start of
the group created first, and then all the rest of the radios in that group. To finish, click the Set Creation Order menu item again
to deactivate this mode.

Other properties are available for static text controls (so that one can specify whether their text is left- or right-aligned) and but-
ton controls (allowing one to specify whether or not the control should be the default button). For examples of all of these, look
through some of the supplied plug-ins, some of which contain quite complex dialogs.

Other things to look out for
The Parallel 5ths and 8ves plug-in illustrates having several methods in a plug-in, which we haven’t needed so far. The Proof-
read plug-in illustrates that one plug-in can call another – it doesn’t do much itself except call the CheckPizzicato,
CheckSuspectClefs, CheckRepeats and CheckHarpPedaling plug-ins. Thus you can build up meta-plug-ins that use libraries
of others. Cool!

(You object-oriented programmers should be informed that this works because, of course, each plug-in is an object with the same
powers as the objects in a score, so each one can use the methods and variables of the others.)

Deleting multiple objects from a bar
If you wish to delete multiple objects from a bar, you should first build up a list of items to delete, then iterate over the list deleting
each object in turn. It is not sufficient to simply delete the objects from the bar as you iterate over them, as this may cause the iter-
ator to go out of sync. Therefore, code to delete all tuplets from a bar should look something like this:

counter = 0;
for each Tuplet tup in bar {
 name = "tuplet" & counter;
 @name = tup;
 counter = counter + 1;
}

Tutorial

26

// Delete objects in reverse order
while(counter > 0) {
 counter = counter - 1;
 name = "tuplet" & counter;
 tup = @name;
 tup.Delete();
}

Debugging your plug-ins

27

Debugging your plug-ins

When developing any computer program, it’s all too easy to introduce minor (and not so minor!) mistakes, or bugs. ManuScript
performs its own internal error checking at all times, and you’ll find that if you try to access a non-existent method or variable on
an object, or make a syntax error, or attempt to add or remove bars or items from bars while iterating over them, the plug-in will
throw an error and open the plug-in editor window at the line that generated the error.

As ManuScript is a simple, lightweight system, there is no special purpose debugger, but there are a handful of tools provided to
help you debug your plug-ins.

Undo
One good technique for finding problems in your plug-ins is to set Sibelius’s undo buffer to a very small size, or to disable it alto-
gether (by dragging the slider on the Other page of File > Preferences to its leftmost position). In the unlikely event that Manu-
Script does not throw an error when you perform an illegal operation (e.g. adding or deleting an object while iterating over a bar),
reducing the undo buffer to its smallest possible size will expose the problem right away – though be warned, the result of such a
problem may well be that Sibelius will crash.

Plug-in Trace Window
The trace window can be shown by choosing Plug-ins > Plug-in Trace Window. A special ManuScript command,
trace(string), will print the specified string in the trace window. This is useful to keep an eye on what your plug-in is doing at
particular points. These commands can then be removed when you’ve finished debugging. Another useful feature of the trace
window is function call tracing. When this is turned on, the log will show which functions are being called by plug-ins.

One potential pitfall with the trace(string) approach to debugging is that the built-in hash table and array objects discussed
earlier aren’t strings, and so can’t be output to the trace window. To avoid this problem, both of these objects have a corresponding
method called WriteToString(), which returns a string representing the whole structure of the array or hash at that point. So
we could trace the current value of an array variable as follows:

trace("array variable = " & array.WriteToString());

Checking the validity of objects
One of the common problems that you might encounter when writing complex plug-ins is that the object you are trying to operate
on is no longer valid (e.g. it has already been deleted). You can enable error checking – either for all objects, or for individual
objects – that will cause your plug-in to throw an error if an object is no longer valid.

To enable error checking, use the ManuScript command ValidationChecking(enable[, object1[, object2]...]), and set the
Boolean parameter enable to true. If enable is the only parameter, validation checking is enabled for all types of objects, and all
plug-ins. If you supply one or more object parameters (e.g. Tuplet, Score, BarObject, etc.), only those objects will be
checked, and only in the currently running plug-in. You should ensure ValidationChecking is set to false before you give
your plug-ins to anybody else to use.

You can also use the special method IsValid() to determine whether an object is valid: it will return false if the object in
question no longer exists. GetValidationError(object) returns an empty string if there is no error, or returns a string if an
error has occurred, so you can do e.g. trace(GetValidationError(score)); to trace any validation error returned by a
Score object to the trace window.

Stopping the plug-in
If you want to force your plug-in to stop on a particular error condition, use the method StopPlugin([message]), which will
stop your plug-in, display the optional message in an alert box, and open the plug-in editor at the line of code reached.

Tutorial

28

Storing and retrieving preferences

In Sibelius 4 or later, you can use Preferences.plg, contributed by Hans-Christoph Wirth, to store and retrieve user-set prefer-
ences for your plug-ins.

How does it work?
Preferences.plg stores its data in a text file in the user’s application data folder. Strings are accessed as associated pairs of a key
(the name of the string) and a value (the contents of the string). The value can also be an array of strings, if required.

Initializing the database
errorcode = Open(pluginname,featureset);

Open the library and lock for exclusive access by the calling plug-in. The calling plug-in is identified with the string plugin-
name. It is recommended that this string equals the unique Sibelius menu name of the calling plug-in.

Parameter featureset is the version of the feature set requested by the calling plug-in. The version of the feature set is currently
020000. Each library release shows in its initial dialog a list of supported feature sets. The call to Open()will fail and show a
user message if you request an unsupported feature set. If you should want to prevent this user information (and probably
setup your own information dialog), use CheckFeatureSet() first.

After Open()the scope is undefined, such that you can access only global variables until the first call to SwitchScope().

Return value: Open() returns zero or a positive value on success. A negative result indicates that there was a fatal error and
the database has not been opened.

* -2 other error
* -1 library does not support requested feature set
* 0 no common preferences database found
* 1 no preferences found for current plug-in
* 2 preferences for current plug-in loaded

In case of errors (e.g. if the database file is unreadable), Open() offers the user an option to recover from the error condition.
Only if this fails too will an error code be returned to the calling plug-in.

errorcode = CheckFeatureSet(featureset);

Check silently if the library supports the requested feature set.

Return value: CheckFeatureSet() returns zero or a positive value on success. A negative value indicates that the
requested feature set is not supported by this version.

errorcode = Close();

Release the exclusive access lock to the library. If there were any changes since the last call to Open() or Write(), dump the
data changes back to disk (probably creating a new score, if there was none present).

Return value: Close() returns zero or a positive value on success. A negative result indicates that there was a fatal error and
the database has not been written.

errorcode = CloseWithoutWrite();

Release the exclusive access lock to the library, discarding any changes performed since last call to Open()or Write().

Return value: CloseWithoutWrite() returns zero or a positive value on success. A negative result indicates that there
was a fatal error, namely that the database was not open at the moment.

errorcode = Write(dirty);

Force writing the data back to disk immediately. Keep library locked and open. If dirty equals 0, the write only takes place if the
data has been changed. If dirty is positive, the common preferences score is unconditionally forced to be rewritten from scratch.

Return value: Write() returns zero or a positive value on success. A negative result indicates that there was a fatal error and the
database has not been written.

Accessing data
index = SetKey(keyname, value);

Store a string value value under the name keyname in the database, overwriting any previously stored keys or arrays of the
same keyname.

If keyname has been declared as a local key, the key is stored within the current scope and does not affect similar keys in other
scopes. It is an error to call SetKey() for local keys if the scope is undefined.

Return value: SetKey() returns zero or a positive value on success, and a negative value upon error.

errorcode = SetArray(keyname, array, size);

Store a array array of strings under the name keyname in the database, overwriting any previously stored keys or arrays of the
same keyname. size specifies the number of elements in the array. A size of -1 is replaced with the natural size of the array,
i.e., array.NumChildren.

If keyname has been declared as a local key, the array is stored within the current scope and does not affect similar keys in
other scopes. It is an error to call SetArray() for local keys if the scope is undefined.

Return value: SetArray() returns zero or a positive value on success, and a negative value upon error.

value = GetKey(keyname);

Retrieve the value of key keyname from the database. It is an error to call GetKey() on an identifier which had been stored
the last time using SetArray(). For local keys, the value is retrieved from the current scope which must not be undefined.

Return value: The value of the key or Preferences.VOID if no key of that name found.

size = GetArray(keyname, myarray);

Retrieve the string array stored under name keyname from the database. It is an error to call GetArray() on an identifier
which has been stored the last time by SetKey(). For local arrays, the value is retrieved from the current scope which must
not be undefined.

You must ensure before the call that myarray is of ManuScript’s array type (i.e., created with CreateArray()).

Return value: size equals the number of retrieved elements or -1 if the array was not found. Note that size might be smaller
than myarray.NumChildren, because there is currently no way to reduce the size of an already defined array.

size = GetListOfIds(myarray);
Fill the array myarray with a list of all known Ids in the current score (or in the global scope, if undefined). Before you call this
method, ensure that myarray is of ManuScript’s array type (i.e. created with CreateArray()).

Return value: returns the size of the list, which might be smaller than the natural size of the array, myarray.Numchil-
dren.

index = UnsetId(keyname);

Erase the contents stored with an identifier (there is no distinction between keys and arrays here). If the key is declared as
local, it is erased only from the local scope which must not be undefined.

Return value: The return value is zero or positive if the key has been unset. A negative return value means that a key of that
name has not been found (which is not an error condition).

RemoveId(keyname);

Erase all contents stored in the database with an identifier (there is no distinction between keys and arrays here). If the key is
declared as local, it is erased from all local scopes.

Return value: The return value is always zero.

RemoveAllIds();

Erase everything related to the current plug-in.

Return value: the return value is always zero.

Tutorial

30

Commands for local variables
errorcode = DeclareIdAsLocal(keyname);

Declare an identifier as a local key. Subsequent calls to Set... and Get... operations will be performed in the scope which is
set at that time. The local state is stored in the database and can be undone by a call to DeclareIdAsGlobal or
RemoveId.

Return value: Non-negative on success, negative on error.

size = GetListOfLocalIds(myarray);

Fill the array myarray with a list of all Ids declared as local. Before you call this method, ensure that myarray is of ManuScript’s
array type (i.e. created with CreateArray()).

Return value: Returns the size of the list, which might be smaller than the natural size of the array, myarray.NumChil-
dren.

errorcode = SwitchScope(scopename);

Select scope scopename. If scope scopename has never been selected before, it is newly created and initialized with no local
variables. Subsequent Set... and Get... operations for keys declared as local will be performed in scope scopename, while
access to global keys is still possible.

The call SwitchScope("") selects the undefined scope which does not allow access of any local variables.

Return value: Non-negative on success, negative on error.

errorcode = RemoveScope();

Erase all local keys and arrays from the current scope and delete the current scope from the list of known scopes. It is an error
to call RemoveScope() if the current scope is undefined. After the call, the database remains in the undefined scope.

errorcode = RemoveAllScopes();

Erase all local keys and arrays from all scopes and delete all scopes from the list of known scopes. After the call, the database
remains in the undefined scope. Note that this call does retain the information which Ids are local (see DeclareIdAsLo-
cal()).

Return value: Non-negative on success.

string = GetCurrentScope();

Retrieve the name of the currently active scope, or the empty string if the database is in undefined scope.

Return value: Returns a string.

size = GetListOfScopes(myarray);

Fill the array myarray with a list of all known scope names. You must ensure before the call that myarray is of ManuScript’s
array type (i.e., created with CreateArray()).

Return value: Returns the size of the list, which might be smaller than the natural size of the array, myarray.NumChil-
dren.

Miscellaneous
Trace(tracelevel);

Select level of tracing for the library. Useful levels are: 0 for no trace, 10 for sparse trace, 20 for medium trace, 30 for full trace.
This command can also be run when the library is not open, to specify the tracing level for the Open() call itself.

TraceData();

Writes a full dump of the data stored currently in ThisData array to the trace window. This is the full data belonging to the
current plug-in. TraceData() always traces the data, regardless of the current trace level selected.

filename = GetFilename();

Return the full filename of the preferences database (including path).

Editor();

Invoke the interactive plug-in editor. This method must not be called while the database is open. Direct calls to Editor()
from plug-ins are deprecated, since the end-user of your plug-in will probably not expect to be able to edit (and destroy) the
saved preferences of all plug-ins at this stage.

Basic example
Suppose you have a plug-in called myplugin and would like to save some dialog settings in a preferences file such that these set-
tings are persistent over several Sibelius sessions and computer reboots. Your dialog may contain two checkboxes and a list box.
Let DialogDontAskAgain and DialogSpeedMode be the global variables holding the status of the checkboxes, respec-
tively, and let DialogJobList hold the contents of the list box item.

The work with the database can be reduced to four steps:

1. Open the database and retrieve initial data. At begin of your plug-in, e.g. right at top of your Run() method, you have to add
some code to initialize the database. You probably also want to initialize your global keys based on the information currently
stored in the database. See below for a detailed example. (Depending on your program, you might have to define prefOpen as a
global variable in order to prevent trying to access an unopened database in future.)

// At first define hard coded plug-in defaults, in case that the plug-in
// is called for the first time. If anything else fails, these defaults
// will be in effect.

DialogDontAskAgain = 0;
DialogSpeedMode = 0;
DialogJobList = CreateArray();
DialogJobList[0] = "first job";
DialogJobList[1] = "second job";

// Attempt to open the database

prefOpen = Preferences.Open("myplugin", "020000");
if(prefOpen >= 0) {

// Database successfully opened. So we can try to load the
// information stored last time.
// It’s a good idea to work with a private version scheme, in order
// to avoid problems in the future when the plug-in is developed
// further, but the database still contains the old keys. In our
// example, we propose that the above mentioned keys are present
// if "version" key is present and has a value of "1".

version = Preferences.GetKey("Version");

switch(version) {

case("1") {

// Now overwrite the above set defaults with the information stored
// in the database.

DialogDontAskAgain = Preferences.Getkey("DontAskAgain");
DialogSpeedMode = Preferences.Getkey("SpeedMode");
Preferences.GetArray("JobList", DialogJobList);

}

default {

// handle other versions/unset version gracefully here ...

}

}

}

Tutorial

32

2. Work with the data. After the initialization step, you can and should work with global variables DialogDontAskAgain,
DialogSpeedMode, and DialogJobList as you are used to: read from them to base control flow decisions on their setting,
write to them (mostly from within your own dialogs) to set new user preferences.

3. Write data back to the database. To make any changes persistent, you must tell the database the new values to be written to the
hard disk. See below for a detailed example. According to taste, you can execute these lines each time the settings are changed, or
only once, at the end of your plug-in.

if(prefOpen >= 0) {
Preferences.SetKey("Version", "1");
Preferences.SetKey("DontAskAgain", DialogDontAskAgain);
Preferences.SetKey("SpeedMode", DialogSpeedMode);
Preferences.SetArray("JobList", DialogJobList, -1);

}

4. Close the database. In any case, you must release the lock to the library on exit of your plug-in. This writes data actually back to
disk, and enables other plug-ins to access the shared database later. To do this, use:

Preferences.Close();

Storing and retrieving preferences

33

Reference

Reference

34

Syntax

Here is an informal run-down of the syntax of ManuScript.

A method consists of a list of statements of the following kinds:

Block { statements }

e.g.

{
a = 4;

}

While while { expression } block

e.g.

while (i < 3) {
Sibelius.MessageBox(i);
i = i + 1;

}

Switch switch (test-expression) {
 case (case-expression-1) block
 [case (case-expression-2) block]
 …
 [default block]

The switch statement consists of a “test” expression, multiple case statements and an
optional default statement. If the value of test-expression matches one of the case-expres-
sions, then the statement block following the matching case statement will be executed. If
none of the case statements match, then the statement block following the default state-
ment will be executed. For example:

switch (note.Accidental) {
case (DoubleSharp) {

Sibelius.MessageBox("Double sharp");
}
case (DoubleFlat) {

Sibelius.MessageBox("Double flat");
}
default {

Sibelius.MessageBox("No double");
}

}

if else if (expression) block [else block]

e.g.

if (found) {
Application.ShowFindResults(found);

} else {
Application.NotFindResults();

}

Syntax

35

for each for each variable in expression
block

This sets variable to each of the sub-objects within the object given by the expression.

Normally there is only one type of sub-object that the object can contain. For instance, a
NoteRest (such as a chord) can only contain Note objects. However, if more than one type of
sub-object is possible you can specify the type:

for each Type variable in expression
block

e.g.

for each NoteRest n in thisstaff {
n.AddNote(60); // add middle C

}

for for variable = value to value [step value]
block

The variable is stepped from the first value up to or down to the end value by the step value.
It stops one step before the final value.

So, for example:

for x=1 to note.NoteCount {
...

}

works correctly.
assignment variable = expression;

e.g.

value = value + 1;

or

variable.variable = expression;

e.g.

Question.CurrentAnswer=True;

method call variable.identifier(comma-separated expressions);

e.g.

thisbar.AddText(0,"Mozart","text.system.composer");

self method call identifier(comma-separated expressions);

Calls a method in this plug-in, e.g.

CheckIntervals();

return return expression;

Returns a value from a plug-in method, given by the expression. If a method doesn’t con-
tain a return statement, then a “null” value is returned (either the number zero, an empty
string, or the null object described below).

Reference

36

Expressions

Here are the operators, literals and other beasts you’re allowed in expressions.

Self This is a keyword referring to the plug-in owning the method. You can pass yourself to
other methods, e.g.

other.Introduce(Self);

null This is a literal object meaning “nothing.”
Identifier This is the name of a variable or method (letters, digits or underscore, not starting with a

digit) you can precede the identifier with @ to provide indirection; the identifier is then
taken to be a string variable whose value is used as the name of a variable or method.

member variable variable.variable

This accesses a variable in another object.
integer e.g. 1, 100, -1
floating point number e.g. 1.5, 3.15, -1.8
string Text in double quotes, e.g. "some text". For strings that are rendered by Sibelius as part

of the score, i.e. the contents of some text object, there is a small but useful formatting lan-
guage allowing one to specify how the text should appear. These “styled strings” contain
commands to control the text style. All commands start and end with a backslash (\) The
full list of available styling commands is as follows:

\n\ New line

\B\ Bold on

\b\ Bold off

\I\ Italic on

\i\ Italic off

\U\ Underline on

\u\ Underline off

\fArial Black\ Font change to Arial Black (for example)

\f_\ Font change to text style's default font

\s123\ Size change to 123 (units are 1/32nds of a space, not points)

\$keyword\ Substitutes a string from the Score Info dialog (see below)

A consequence of this syntax is that backslashes themselves are represented by \\, to avoid
conflicting with the above commands.

The substitution command \$keyword\ supports the following keywords: Title, Com-
poser, Arranger, Lyricist, MoreInfo, Artist, Copyright, Publisher and
PartName. Each of these correspond to a field in the File > Score Info dialog.

not not expression

Logically negates an expression, e.g.

not (x=0)

and expression and expression

Logical and, e.g.

FoxFound and BadgerFound

Expressions

37

or expression or expression

Logical or, e.g.

FoxFound or BadgerFound

equality expression = expression

Equality test, e.g.

Name="Clock"

subtract expression – expression

Subtraction, e.g.

12-1

add expression + expression

Addition, e.g.

12+1

minus –expression

Inversion, e.g.

-1

concatenation expression & expression

Add two strings, e.g.

Name = "Fred" & "Bloggs"; // ‘Fred Bloggs’

You can’t use + as this would attempt to add two numbers, and sometimes succeed (!). For
instance:

x = "2" + "2"; // same as x = 4

subexpression (expression)

For grouping expressions and enforcing precedence, e.g.

(4+1)*5

method call variable.identifier(comma-separated expressions);

e.g.

x = monkey.CountBananas();

self method call Identifier(comma-separated expressions);

Calls a method in this plug-in, e.g.

x = CountBananas();

Reference

38

Operators

Condition operators
You can put any expressions in parentheses after an if or while statement, but typically they will contain conditions such as =
and <. The available conditions are very simple:

a = b equals (for numbers, text or objects)

a < b less than (for numbers)

a > b greater than (for numbers)

c and d both are true

c or d either are true

not c inverts a condition, e.g. not(x=4)

<= less than or equal to

>= greater than or equal to

!= not equal to

Note that you use = to compare for equality, not == as found in C/C++ and Java.

Arithmetic
a + b add

a - b subtract

a * b multiply

a / b divide

a % b remainder

-a negate

(a) evaluate first

ManuScript will evaluate expressions from left to right, so that 2+3*4 is 20, not 14 as you might expect. To avoid problems with
evaluation order, use parentheses to make the order of evaluation explicit. To get the answer 14, you’d have to write 2+(3*4).

ManuScript also now supports floating point numbers, so whereas in previous versions 3/2 would work out as 1, it now evaluates
to 1.5. Conversion from floating point numbers to integers is achieved with the RoundUp(expr), RoundDown(expr) and
Round(expr)functions, which can be applied to any expression.

Object Reference

Object Reference

40

Hierarchy of objects

Sibelius object

Scores

Staves (including the System staff)Selections

Bars

Text, Clefs, Lines, Time Signatures, Key Signatures,
Highlights, Lyrics, Barlines, Tuplets, GuitarFrames,

GuitarScaleDiagrams, Comments,
NoteRests (these are all BarObjects)

Notes (in NoteRests only)

VersionHistory

Version

VersionComment

DynamicPartCollection

DynamicPart

All objects

41

All objects

Methods
AddToPluginsMenu("menu text","function name")

Adds a new menu item to the Plug-ins menu. When the menu item is selected the given function is called. This is normally
only used by plug-ins themselves. This method may only be called once per plug-in (i.e. each plug-in may only add one item
to the Plug-ins menu); subsequent method calls will be ignored.

Asc(expression)

Returns the ASCII value of a given character (the expression should be a string of length 1).

CharAt(expression,position)

Returns the character from the expression at the given (zero-based) position, e.g. CharAt("Potato",3) would give “a.”

Chr(expression)

Returns a character (as a string) with the given ASCII value. This can be used for inserting double quotes (") into strings with
Chr(34).

CreateArray()

Returns a new array object.

CreateHash()

Returns a new hash-table object.

GetValidationError(object)
Returns the validation error, if any, of the specified object. Useful to pass validation errors to the plug-in trace window.

IsObject(expression)

Returns 1 (or True) if expression evaluates to an object rather than a string or integer.

(Not to be confused with the IsPassage variable of Selection objects!)

IsValid(object)
Returns 1 (or True) if the object is valid, returns 0 (or False) if the object no longer exists (i.e. has been deleted).

JoinStrings(expression, delimiter)

Joins together (concatenates) an array of strings into a single string, separated by the string delimiter.

Length(expression)

Gives the number of characters in the value of the expression.

Round(expression)

Returns the nearest integer to the value of the expression, e.g. Round(1.5) would be “2” and Round(1.3) would be “1.”

RoundDown(expression)

Returns the nearest integer less than the value of the expression, e.g. RoundDown(1.5) would be “1.”

RoundUp(expression)

Returns the nearest integer greater than the value of the expression, e.g. RoundUp(1.5) would be “2.”

SplitString(expression,[delimiter,][trimEmpty])

Splits a string into an array of strings, using the given delimiter. The delimiter can be a single character or a string containing
several characters – for instance ".," would treat either a comma or full stop as a delimiter. The default delimiter is the space
character. If the trimEmpty parameter is True then this will ignore multiple delimiters (which would otherwise produce some
empty strings in the array). The default value of trimEmpty is False.

Object Reference

42

s=':a:b:c';
bits=SplitString(s,':', false);
// bits[0] = ''; bits[1] = 'a'; bits[2] = 'b' ...
s='a b c';
bits=SplitString(s,' ', true);
// bits[0] = 'a'; bits[1]='b' ...

StopPlugin([message])
Stops the plug-in, and shows the optional message in an alert box. Opens the plug-in editor at the line of code reached.

Substring(expression,start,[length])

This returns a substring of the expression starting from the given start position (zero-based) up to the end of the expression,
e.g. Substring("Potato",2) would give “tato”. When used with the optional length parameter, Substring returns a sub-
string of the of the expression starting from the given start position (zero-based) of the given length, e.g. Sub-
string("Potato",2,2) would give “ta”.

Trace(expression)

Sends a piece of text to be shown in the plug-in trace window, e.g. Trace("Here's a trace");

ValidationChecking(enable[, object1[, object2]...])

If enable is the only parameter, validation checking is enabled for all types of objects, and across all plug-ins. If you supply one
or more object parameters (e.g. Tuplet, Score, BarObject, etc.), only those objects will be checked, and only in the cur-
rently running plug-in. You should ensure ValidationChecking is set to false before you give your plug-ins to any-
body else to use.

User properties
All objects (except for the Sibelius object, old-style ManuScript arrays created using CreateArray(), old-style ManuScript
hashes created using CreateHash(), and null) can also have user properties assigned to them. See User properties on
page 21 for more details.

Bar

43

Bar

A Bar contains BarObject objects.

for each variable in produces the BarObjects in the bar

for each type variable in produces the BarObjects of the specified type in the bar

Methods
AddBarNumber(new bar number[,format[,extra_text[,prepend[,skip this bar]]]])

Adds a bar number change to the start of this bar. new bar number should be the desired external bar number. The optional
format parameter takes one of the three pre-defined constants that define the bar number format; see Global constants on
page 119. The optional extra_text parameter takes a string that will be added after the numeric part of the bar number, unless
the optional boolean parameter prepend is True, in which case the extra_text is added before the numeric part of the bar
number. If the optional skip this bar parameter is True, the bar number change is created with the Don’t increment bar
number option set. Returns the BarNumber object created.

AddChordSymbolFromPitches(position,pitches[,instrument style])
Adds a chord symbol from the given array of pitches at the specified position. The optional instrument style parameter oper-
ates the same as in the AddGuitarFrame method (see above). If the method is unable to create a chord symbol, the method
returns null; otherwise it returns the GuitarFrame object created.

AddClef(pos,concert pitch clef[,transposed pitch clef])

Adds a clef to the staff at the specified position. concert pitch clef determines the clef style when Notes > Transposing Score is
switched off; the optional transposed pitch clef parameter determines the clef style when this is switched on. Clef styles should
be an identifier like “clef.treble”; for a complete list of available clef styles, see Clef styles on page 122. Alternatively you can
give the name of a clef style, e.g. “Treble,” but bear in mind that this may not work in non-English versions of Sibelius. Returns
the Clef object created.

AddGraphic(file name,pos[,below staff[,x displacement[,y displacement[,size ratio]]]])

Adds a graphic above or below the bar at a given position. If below staff is True, Sibelius will position the graphic below the
staff to which it is attached, otherwise it will go above (the default). You may additionally displace the graphic from its default
position by specifying x- and y displacements. These should be expressed in millimeters, the latter defining an offset from the
top or bottom line of the staff, as appropriate. By default, the graphic will be created 5mm away from the staff. To adjust the
size of the graphic, you may set a floating point number for its size ratio. When set to 1.0 (the default), the graphic will be cre-
ated with a height equal to that of the staff to which it is attached. A value of 0.5 would therefore halve its size, and 2.0 double
it. The graphic may be rescaled to a maximum of five times the height of its parent staff. This function returns True if success-
ful, otherwise False.

AddGraphicToBlankPage(file name,nth page,x offset,y offset[,size ratio])

Adds a graphic to a blank page belonging to the current bar. nth page specifies the particular blank page you would like the
graphic to, starting from 1. The x offset and y offset parameters are floating point values relative to the size of the page the
graphic is being added to. For example, an x offset of 0.0 would position the graphic at the very left of the page; 0.5 in the cen-
tre. You may specify the size of the graphic by specifying a value for size ratio. This defaults to 1.0, which has the same effect as
creating a graphic in Sibelius manually using Create > Graphic. (As with AddGraphic, 0.5 would halve its size, and 2.0
double it.) The graphic may be rescaled to a maximum of five times its intial size. This function returns True if successful, oth-
erwise False.

AddGuitarFrame(position,chord name[,instrument style[,fingerings])

Adds a chord symbol for the given chord name to the bar. The optional instrument style parameter should refer to an existing
instrument type that uses tab, and should be specified by identifier; see Instrument types on page 122. If instrument style
is not specified, Sibelius will create a chord symbol that will optionally display a chord diagram using the default tab tuning
associated with the instrument type used by the staff to which the chord symbol will be attached. The position is in 1/256th
quarters from the start of the bar. The optional fingerings parameter gives the fingerings string to display above (or below) the

Object Reference

44

guitar frame, if supplied. If the method is unable to create a chord symbol, the method returns null; otherwise it returns the
GuitarFrame object created.

AddInstrumentChange(pos,styleID[,add_clef[,show_text[,text_label[,show_warning[,warning_label,
[full_instrument_name[, short_instrument_name]]]]]])

Adds an instrument change to the bar at the specified position. styleID is the string representing the instrument type to
change to (see Instrument types on page 122 for a list). The optional boolean parameter add_clef, True if not specified,
determines whether Sibelius will add a clef change at the same position as the instrument change if required (i.e. if the clef of
the new instrument is different to that of the existing instrument). show_text is an optional boolean parameter, True if not
specified, determining whether or not the text label attached to the instrument change should be created shown (the default)
or hidden. text_label is an optional string parameter; if specified, Sibelius will use this string instead of the default string (the
new instrument’s long name). show_warning is an optional boolean parameter, True if not specified, determining whether or
not Sibelius should create a text object (using the Instrument change staff text style) above the last note preceding the instru-
ment change, announcing the instrument change and giving the player time to pick up the new instrument. warning_label is
an optional string parameter; if specified, Sibelius will use this string instead of the default string (the word “To” followed by
the new instrument’s short name). You can also override the names Sibelius will give the instruments on subsequent systems.
If a null string is passed to either full_instrument_name or short_instrument_name (or if the arguments are omited), the
instrument names will remain unchanged. Returns the InstrumentChange object created.

AddKeySignatureFromText(pos,key name,major key[,add double barline[,hidden[,one staff only]]])

Adds a key signature to the bar. The key signature is specified by text name, e.g. “Cb” or “C#”. The third parameter is a Boolean
flag indicating if the key is major (or minor). Unless the fourth parameter is set to False, a double barline will ordinarily be
created alongside the key signature change. You may additionally hide the key signature change by setting hidden to True,
and make the change of key appear on the bar’s parent staff only with the one staff only flag. Returns the key signature object
created.

AddKeySignature(pos,num sharps,major key[,add double barline[,hidden[,one staff only]]])

Adds a key signature to the bar. The key signature is specified by number of sharps (+1 to +7), flats (-1 to –7), no accidentals
(0) or atonal (-8). The third parameter is a Boolean flag indicating if the key is major (or minor). Unless the fourth parameter
is set to False, a double barline will ordinarily be created alongside the key signature change. You may additionally hide the
key signature change by setting hidden to True, and make the change of key appear on the bar’s parent staff only with the one
staff only flag. Returns the key signature object created.

AddLine(pos,duration,line style[,dx[,dy[,voicenumber[,hidden]]]])

Adds a line to the bar. The line style can be an identifier such as “line.staff.hairpin.crescendo” or a name, e.g. “Crescendo”. For
a complete list of line style identifiers that can be used in any Sibelius score, see Line styles on page 121. Style identifiers are
to be preferred to named line styles as they will work across all language versions of Sibelius. Returns the Line object created,
which may be one of a number of types depending on the Line style used.

AddLyric(position,duration,text[,syllable type [,number of notes,voicenum]]])

This method adds a lyric to the bar. The position is in 1/256th quarters from the start of the bar, and the duration is in 1/256th
quarter units. The two optional parameters allow you to specify whether the lyric is at the end of a word (value is “1”, and is the
normal value) or at the start or middle of a word (value is “0”), and how many notes the lyric extends beneath (default value
1). You can also optionally specify the voice in which the lyric should be created; if voicenum is 0 or not specified, the lyric is
created in all voices. Returns the LyricItem object created.

AddNote(pos,sounding pitch,duration,[tied [,voice[,diatonic pitch[,string number]]]])

Adds a note to staff, adding to an existing NoteRest if already at this position (in which case the duration is ignored); other-
wise creates a new NoteRest. Will add a new bar if necessary at the end of the staff. The position is in 1/256th quarters from
the start of the bar. The optional tied parameter should be True if you want the note to be tied. Voice 1 is assumed unless the
optional voice parameter (with a value of 1, 2, 3 or 4) is specified. You can also set the diatonic pitch, i.e. the number of the
“note name” to which this note corresponds, 7 per octave (35 = middle C, 36 = D, 37 = E and so on). If a diatonic pitch of zero
is given, a suitable diatonic pitch will be calculated from the MIDI pitch. The optional string number parameter gives a string
number for this note, which is only meaningful if the note is on a tablature stave. If this parameter is not supplied then a

Bar

45

default string number is calculated based on the current tablature stave type and the guitar tab fingering options (specified on
the Notes page of File > Preferences). Returns the Note object created (to get the NoteRest containing the note, use
Note.ParentNoteRest).

AddPageNumber([blank page offset])

Creates and returns a page number change at the end of the bar. Note that – due to the nature of adding a page number change
– a page break will also be created at the end of the bar. Therefore, the page number change will actually be placed at the start
of the next bar. The desired properties of the page number change can be set by calling the appropriate methods on the Page
Number Change object returned.

The blank page offset flag allows you to create page number changes on blank pages. If a bar object is followed by one or more
blank pages, each blank page may also have a page number change of its own. If unspecified, the page number change will be
created on the next available page (whether it contains music or not) after the bar, otherwise the user may specify a 1-based
offset which refers to the nth blank page after the bar itself.

AddRehearsalMark([consecutive[,mark[,new prefix and suffix[,prefix[,suffx[,override defaults]]]]])

Adds a rehearsal mark above the bar. If no parameters have been specified, the rehearsal mark will inherit the properties of the
previous rehearsal mark in the score, incrementing accordingly. Optionally, the appearance of the rehearsal mark may be
overriden. If consecutive is False, Sibelius will not continue the numbering of the new rehearsal marks consecutively, but allow
the user to set a new mark. A mark may be expressed as a number of a string. For example both 5 and “e” are both valid and
equivalent values. If new prefix and suffix is True, the values set for prefix and suffix will be applied to the new rehearsal mark.
The final parameter, override defaults, is a Boolean defaulting to False whose purpose it is to mimic the behavior of the option
with the same name in the Rehearsal Mark dialog in Sibelius.

AddSpecialBarline(barline type[,pos])
Adds a special barline to a given position in a bar; see Global constants on page 119. If no position has been specified, start
repeat barlines will snap to the start of the bar by default. All other special barline types will snap to the end.

AddSymbol(pos,symbol index or name)

Adds a symbol to the bar at the specified position. If the second parameter is a number, this is taken to be an index into the
global list of symbols, corresponding to the symbol’s position in the Create > Symbol dialog in Sibelius (counting left-to-
right, top-to-bottom from zero in the top-left hand corner). Some useful symbols have pre-defined constants; see Global
constants on page 119. There are also constants defined for the start of each group in the Create > Symbol dialog, so that to
access the 8va symbol, for example, you can use the index OctaveSymbols + 2. It’s better to use indices rather than
names, because the names will be different across the various language versions of Sibelius. Returns the Symbol object cre-
ated.

AddText(pos,text,style[,voicenum])

Adds the text at the given position, using the given text style. A staff text style must be used for a normal staff, and a system
text style for a system staff. The styles should be an identifier of the form “text.staff.expression”; for a complete list of text
styles present in all scores, see Text styles on page 121. Alternatively you can give the name of a text style, eg. “Expression”,
but be aware that this may not work in non-English versions of Sibelius. You can also optionally specify the voice in which the
lyric should be created; if voicenum is 0 or not specified, the text object is created in all voices. Returns the Text object created.

AddTextToBlankPage(xPos,yPos,text,style,pageOffset)

Adds the text at the given position, using the given text style. A blank page text style must be used; you cannot add staff text or
system text to a blank page. style takes a style ID, using the form “text.blankpage.title”; for a complete list of text styles present
in all scores, see Text styles on page 121. xPos and yPos are the absolute position on the page. pageOffset takes a positive
number for a blank page following a special page break (the first blank page is 1), and negative for a blank page preceding the
first bar of the score (the blank page immediately before the first bar is -1, the one before that -2, and so on). Returns the
Text object created.

To add text to a blank page, first create the special page break using the Bar.BreakType variable, and set the number of
blank pages using Bar.NumBlankPages or Bar.NumBlankPagesBefore. Then use Bar.AddTextToBlankPage.

Object Reference

46

AddTimeSignature(top,bottom,allow cautionary,rewrite music[,use symbol])

Returns an error string (which will be empty if there was no error) which if not empty should be shown to the user. The first
two parameters are the top and bottom of the new time signature. The third tells Sibelius whether to display cautionary time
signatures from this time signature. If rewrite music is True then all the bars after the inserted the time signature will be
rewritten. You can also create common time and alla breve time signatures. If you’re creating a time signature in 4/4 or 2/2, set
use symbol to True and Sibelius will replace the numbers of the time signature with their symbolic equivalent.

AddTimeSignatureReturnObject(top,bottom,allow cautionary,rewrite music[,use symbol])

As above, but returns the time signature object created, or null if unsuccessful.

AddTuplet(pos,voice,left, right, unit[, style[, bracket[, fullDuration]]])

Adds a tuplet to a bar at a given position. The left and right parameters specify the ratio of the tuplet, e.g. 3 (left) in the time of
2 (right). The unit parameter specifies the note value (in 1/256th quarters) on which the tuplet should be based. For example,
if you wish to create an eighth note (quaver) triplet group, you would use the value 128. The optional style and bracket param-
eters take one of the pre-defined constants that affect the visual appearance of the created tuplet; see Global constants on
page 119. If fullDuration is true, the bracket of the tuplet will span the entire duration of the tuplet. Returns the Tuplet object
created.

N.B.: If AddTuplet() has been given illegal parameters, it will not be able to create a valid Tuplet object. Therefore, you
should test for inequality of the returned Tuplet object with null before attempting to use it.

Bar[array element]

Returns the nth item in the bar (counting from 0) e.g. Bar[0]

Clear([voice number])
Clears a bar of all its items, leaving only a bar rest. If a particular voice number is specified, only the items in that voice will be
removed.

ClearNotesAndModifiers([voice number])
Clears a bar of all its notes, rests, tuplets and slurs, replacing them with a single bar rest. If a particular voice number is speci-
fied, only the items in that voice will be removed.

Delete()

Deletes and removes an entire bar from a score. This, by definition, will affect all the staves in the score.

DeletePageNumber([blank page offset])

Deletes the page number change at the end of the bar, or if there are one or more blank pages after the bar, any page number
change that occurs on any of those blank pages. If blank page offset is unspecified, the page number change on the first page
after the bar will be deleted.

GetInstrumentTypeAt(pos)

Returns an InstrumentType object representing the instrument type used by the bar at the specified rhythmic position.

GetPageNumber([blank page offset])

Returns the page number change object at the end of the bar, or if the bar contains no page number change, null. As with
AddPageNumber, you may get the page number change from any of the blank pages that follow the bar by specifying a valid
blank page offset.

InsertBarRest(voice number[,rest type])

Inserts a bar rest into the bar, but only if the bar is void of any NoteRests (or an existing bar rest) using the same voice
number. The optional rest type parameter allows you to specify the type of bar rest or repeat bar to be created, defined by the
constants WholeBarRest (the default if rest type is not specified), BreveBarRest, OneBarRepeat, TwoBarRepeat
and FourBarRepeat. Returns True if successful.

NthBarObject(n)

Returns the nth object in the bar, counting from 0.

Bar

47

Respace()

Respaces the notes in this bar.

Variables
BarNumber The bar number of this bar. This is the internal bar number, which always runs consecutively

from 1 (read only).

BarObjectCount The number of objects in the bar (read only).

BreakType The break at the end of this bar, given by the constants MiddleOfSystem, EndOfSystem,
MiddleOfPage, EndOfPage, NotEndOfSystem, EndOfSystemOrPage or Spe-
cialPageBreak. To learn the correspondence between these constants and the menu in the
Bars panel of the Properties window, see the discussion in Global constants on page 119.

When you set the break at the end of a bar to be SpecialPageBreak, Sibelius will add one
blank page after the break. You can then adjust the number of pages by setting the value of
either Bar.NumBlankPages or Bar.NumBlankPagesBefore, or tell Sibelius to restart
the music on the next left or right page with Bar.MusicRestartsOnPage.

ExternalBarNumber This has been deprecated as of Sibelius 5, because it can only return a number, and bar num-
bers that appear in the score may now include text. Use ExternalBarNumberString
instead.

Returns the external bar number of this bar, taking into account bar number changes in the
score (read only). Note that you cannot pass this bar number to any of the other ManuScript
accessors; they all operate with the internal bar number instead.

ExternalBarNumberString The external bar number of this bar as a string, taking into account bar number changes and
bar number format changes (read only). Note that you cannot pass this bar number to any of
the other ManuScript accessors; they all operate with the internal bar number instead.

InMultirest Returns one of four global constants describing if and/or where the bar falls in a
multirest (read only). The constants are NoMultirest, StartsMultirest, EndsMultirest and
MidMultirest; see Global constants on page 119.

Length The rhythmic length (read only).

MusicRestartsOnPage Tells Sibelius to restart the music on the next left or right page after the break. May be set to
only two of the global special page break constants: MusicRestartsOnNextLeftPage or
MusicRestartsOnNextRightPage (write only).

NthBarInSystem Returns the position of the bar in the system, relative to the first bar on the system (bar 0) (read
only).

NumBlankPages The number of blank pages following the bar containing a special page break.

NumBlankPagesBefore The number of blank pages preceding the bar containing a special page break. This value only
has an effect if a special page break exists in bar 1.

OnHiddenStave Returns True if the bar is currently hidden by way of Hide Empty Staves (read only).

OnNthPage Returns the zero-based page number on which the bar occurs in the current part (read only).

OnNthSystem Returns the zero-based system number (relative to its parent page) in which the bar occurs
(read only).

ParentStaff The staff containing this bar (read only).

Selected Returns True if the entire bar is currently selected (read only).

SpecialPageBreakType Returns the type of the special page break; see the documentation for the Special page break
types in Global constants on page 119 (read only).

SplitMultirest When True, a multirest intersecting the bar in question will be split (read/write).

Object Reference

48

Time The time at which the bar starts in the score in milliseconds (read only).

BarObject

49

BarObject

BarObjects include Clef, Line, NoteRest & Text objects. All the methods and variables below apply to all specific types of BarOb-
ject – they are listed here instead of separately for each type. (To object-oriented programmers, the NoteRest, Clef etc. types are
derived from the base class BarObject.)

Methods
Delete()

Deletes an item from the score. This will completely remove text objects, clefs, lines etc. from the score; however, when
a NoteRest is deleted, it will be converted into a rest of similar duration.

Deselect()

Removes the object from the selection list of the parent score. If the selection is currently a passage selection, it is first changed
to a multiple selection before the object is deselected. Returns True if the object is successfully removed from the selection.

GetIsInVoice(voicenum)

Returns True if the object is in the voicenum specified.

GetPlayedOnNthPass(n)

Returns True if the object is set to play back the nth time.

NextItem([voice[, item type]])
Returns the next item in the parent bar of the current item, or null if no item exists. If no arguments have been supplied, the
very next item in the bar will be returned, regardless of its voice number and item type. You may additionally specify the voice
number of the object you’re looking for (1 to 4, or 0 for any voice number), and the item’s type. Note that an item will only be
returned if it exists in the same bar as the source item. By way of example, to find the next crescendo line in voice 2, you would
type something along the lines of: hairpin = item.NextItem(2, “CrescendoLine”);

PreviousItem([voice[, item type]])

As above, but searches backwards.

RemoveVoice(voicenum)

Removes the object from the specified voicenum, leaving the object in all remaining voices.

ResetPosition([horizontal[, vertical]])
Performs Layout > Reset Position on the object. If you supply no parameters, this method will reset both the horizontal and
vertical position of the object. If either or both of the optional Boolean parameters horizontal or vertical is set to True, you
can reset the position of the object either horizontally or vertically independently if required.

ResetDesign()

Performs Layout > Reset Design on the object.

Select()

Appends the object to the selection list of the parent score. A multiple selection consiting of any number of individual objects
can be built up by repeatedly calling Select on each object you wish to add to the list. Note that calling Select on a BarOb-
ject will first clear any existing passage selection.

SetAllVoices()

Sets the object to be in all voices. This has no effect on some types of object, e.g. NoteRests.

SetVoice(voicenum[,clear other voices])

Sets the object to be in voice voicenum, optionally removing the object from all other voices if the Boolean parameter clear
other voices is True.

ShowInAll()

Shows the object in the full score, and in all relevant parts; equivalent to Edit > Hide or Show > Show In All.

Object Reference

50

ShowInParts()

Hides the object in the full score, and shows it in all relevant parts; equivalent to Edit > Hide or Show > Show In Parts.

ShowInScore()

Hides the object in all relevant parts, and shows it in the full score; equivalent to Edit > Hide or Show > Show In Score.

SetPlayedOnNthPass(n, do play)
Tells Sibelius whether or not the object should play back the nth time.

Variables
CanBeInMultipleVoices Returns True if the object can be in more than one voice (read-only).

Color The color of this BarObject (read/write). The color value is in 24-bit RGB format, with bits 0–7
representing blue, bits 8–15 green, bits 16–23 red and bits 24–31 ignored. Since ManuScript
has no bitwise arithmetic, these values can be a little hard to manipulate; you may find the
individual accessors for the red, green and blue components to be more useful (see below).

ColorRed The red component of the color of this BarObject, in the range 0–255 (read/write).

ColorGreen The green component of the color of this BarObject, in the range 0–255 (read/write).

ColorBlue The blue component of the color of this BarObject, in the range 0–255 (read/write).

CueSize True if the object is cue-size in the current part or score, and False if the object is normal
size (read/write).

CurrentTempo Returns the tempo, in bpm, at the location of the object in the score (read only).

DrawOrder Returns the layer at which the object is currently drawn. When used to set the layer of an
object, values from 1 (meaning the bottom layer) to 32 (meaning the highest layer) can be
used; 0 is a special value that tells Sibelius to use the default layer for that type of object (read/
write).

Dx The horizontal graphic offset of the object from the position implied by the Position field,
in units of 1/32 spaces (read/write).

Dy The vertical graphic offset of the object from the centre staff line, in units of 1/32 spaces, posi-
tive going upwards (read/write).

HasCustomDrawOrder Returns True if the object is set to a layer other than its default layer (read only).

Hidden True if the object is hidden in the current part or score, and False if the object is shown
(read/write).

OnNthBlankPage Returns 0 if the object occurs on a page of music, otherwise a number from 1 upwards indicat-
ing the nth blank page of the bar on which the object occurs (read only).

ParentBar The Bar containing this BarObject (read only).

Position Rhythmic position of the object in the bar (read only).

Selected Returns True if the object is currently selected (read only).

Time The time at which the object occurs in the score in milliseconds (read only).

Type A string describing the type of object, e.g. “NoteRest,” “Clef.” This is useful when hunting for a
specific type of object in a bar. See GuitarScaleDiagram type values on page 140 for the
possible values (read only).

UsesMagneticLayout Returns True if the object is positioned by Magnetic Layout. Returns False if the object is
set not to be taken into account by Magnetic Layout. To set whether or not an object should use
Magnetic Layout, use one of the global constants AlwaysDodge (equivalent to Edit > Mag-
netic Layout > On), SuppressDodge (Edit > Magnetic Layout > Off) or DefaultDodge
(Edit > Magnetic Layout > Default) (read/write).

BarObject

51

UsesMagneticLayoutSettingOverridden

Returns True if the object has had its Magnetic Layout settings overridden; otherwise False.

VoiceNumber Is 0 if the item belongs to more than one voice (a lot of items belong to more than one voice)
and 1 to 4 for items that belong to voices 1 to 4 (read only).

Voices Returns or sets Sibelius’s internal bitfield that represents the voices to which an object belongs;
useful for copying the voices used by a given object (read/write).

Object Reference

52

BarRest

Derived from a BarObject object.

Methods
None.

Variables
PauseType Returns the type of fermata (pause), if any, on the bar rest. Returns one of the constants

PauseTypeNone (0), PauseTypeSquare (1), PauseTypeRound (2), PauseType-
Triangular (3) (read/write).

RestType Returns the type of bar rest via one of the constants WholeBarRest (0), BreveBarRest
(1), OneBarRepeat (2), TwoBarRepeat (3), FourBarRepeat (4) (read only). To create
a bar rest of a particular type, use bar.InsertBarRest() (see above).

Clef

53

Clef

Derived from a BarObject

Methods
None.

Variables
ClefStyle The name of this clef, which may be different depending on the state of Notes > Transposing

Score (read only).

ConcertClefStyleId The concert pitch identifier of the style of this clef (read only).

ConcertClefStyle The concert pitch name of this clef (read only).

StyleId The identifier of the style of this clef, which may be different depending on whether or not
Notes > Transposing Score is switched on. This can be passed to the Bar.AddClef method
to create a clef of this style (read only).

TransposingClefStyle The transposing score name of this clef (read only).

TransposingClefStyleId The transposing score identifier of the style of this clef (read only).

Object Reference

54

Comment

Derived from a BarObject.

Methods
AddComment(sr,text[,color[,maximized]])

Adds a comment at the specified sr position in the current bar, displaying the specified text. The optional color parameter
allows you to specify the color of the comment that is created (if not specified, the comment is created with its default color),
and the optional maximized Boolean parameter allows you to set the comment to be minimized (if not specified, the comment
is created maximized by default).

AddCommentWithName(sr,text,username[,color[,maximized]])

Adds a comment that will display a given username at the specified sr position in the current bar, displaying the specified text.
The optional color parameter allows you to specify the color of the comment that is created (if not specified, the comment is
created with its default color), and the optional maximized Boolean parameter allows you to set the comment to be minimized
(if not specified, the comment is created maximized by default).

Variables
Maximized Returns True if the comment is maximized, otherwise returns False (read/write).

Text Returns the text of the comment (read/write).

TextWithFormatting Returns an array containing the various changes of font or style (if any) within the
comment’s text in a new element (read only). For example, “This text is \B\bold\b\, and
this is \I\italic\i\” would return an array with eight elements containing the following
data:

arr[0] = “This text is “
arr[1] = “\B\”
arr[2] = “bold”
arr[3] = “\b\”
arr[4] = “, and this is “
arr[5] = “\I\”
arr[6] = “italic”
arr[7] = “\i\”

TextWithFormattingAsStringThe comment’s text including any changes of font or style (read only).

TimeStamp Returns a DateTime object corresponding to the date the comment was created or last
edited (read only).

UserName Returns the username of the user who created or last edited the comment (read only).

ComponentList

55

ComponentList

An array that is obtained from Sibelius.HouseStyles or Sibelius.ManuscriptPapers. It can be used in a for
each loop or as an array with the [n] operator to access each Component object:

Methods
None.

Variables
NumChildren Number of plug-ins (read only).

Object Reference

56

Component

This represents a Sibelius “component,” namely a house style or a manuscript paper. Examples:

// Create a new score using the first manuscript paper
papers=Sibelius.ManuscriptPapers;
score=Sibelius.New(papers[0]);
// Apply the first house style to the new score
styles=Sibelius.HouseStyles;
score.ApplyStyle(styles[0], "ALLSTYLES");

Methods
None.

Variables
Name The name of the component (read only).

DateTime

57

DateTime

This object returns information about the current date and time.

Methods
None.

Variables
Seconds Returns the number of seconds from the time in a date (read only).

Minutes Returns the number of minutes from the time in a date (read only).

Hours Returns the number of hours from the time in a date (read only).

DayOfMonth returns the nth day on the month, 1-based (read only).

Month returns the nth month of the year, 1-based (read only).

Year returns the year (read only).

NthDayOfWeek returns the nth day of the week, 0-based (read only).

NthDayOfYear returns the nth day of the year, 0-based (read only).

LongDate returns the date in a human-readable format, e.g. 1st May 2008 (read only).

ShortDate returns the date in a human-readable format, e.g. 01/05/2008 (read only).

LongDateAndTime returns the date and time in a human-readable format, e.g. 1st May 2008 14:07 (read only).

ShortDateAndTime returns the date and time in a human-readable format, e.g. 01/05/2008 14:07 (read only).

TimeWithSeconds returns the time in a human-readable format, e.g. 14:07 (read only).

TimeWithoutSeconds returns the time in a human-readable format, e.g. 14:07:23 (read only).

Object Reference

58

Dictionary

For more details about using dictionaries in ManuScript, see Dictionary on page 21.

To create a dictionary, use the built-in function CreateDictionary(name1, value1, name2, value2, ... nameN, valueN).
This creates a dictionary containing user properties called name1, name2, nameN with values value1, value2, valueN respectively.

Methods
CallMethod(methodname,param1,param2,...paramN)

Calls the specified method methodname in the dictionary, passing in any other values that are required for the method as
further parameters.

GetMethodNames()

Returns a sparse array containing the names of the methods belonging to a dictionary.

GetPropertyNames()

Returns a sparse array of the names of all the user properties in the dictionary (same as _propertyNames).

MethodExists(methodname)
Returns True if the specified method methodname exists in the dictionary.

PropertyExists(propertyname)
Returns True if the specified user property propertyname exists in the dictionary.

SetMethod(methodname,Self,method)

Binds a method to the dictionary. methodname is the name by which you want to access the method via the dictionary, Self
refers to the plug-in in which the method is found, and method is the name of the method itself, found elsewhere in the plug-in.

Variables
None.

Converting old-style hash tables to dictionaries
The Dictionary object is, among other things, a replacement for the old Hash object, which was a simple hash table object. You are
recommended to use the new Dictionary object instead of the old Hash object in your plug-ins, but if you have an existing plug-in
in which old-style hashes are used, you can convert them to Dictionaries as follows:

Hash.ConvertToDictionary() returns a new Dictionary object, populated with strings converted from the old-style Hash.

DynamicPartCollection

59

DynamicPartCollection

Accessed from a Score object. Contains DynamicPart objects.

The DynamicPartCollection object always contains the full score as the first entry, whether or not any dynamic parts exist. The
DynamicPart objects are returned in the order in which they were created (the last part returned is the most-recently created
one). For scores in which dynamic parts were generated automatically, the parts will normally be returned in top to bottom score
order.

The edit context for ManuScript is stored in the score itself which means that ManuScript can only ever access one part at a time –
the “current” DynamicPart for that Score object. This is irrespective of the number of score windows open for a score, which
dynamic parts are open, and even if the user has managed to create two different ManuScript Score objects referring to the same
Sibelius score.

It is inadvisable to modify Staves, Bars, or any BarObjects that do not exist on Staves in Score.CurrentDynamicPart.
Doing so will create part overrides for part-specific properties of these objects which will be invisible until those Staves are added
to the part. DynamicPart.IncludesStaff() can be used to test if a DynamicPart contains a particular Staff object.

Both DynamicPartCollection and DynamicPart refer to an underlying Score and part(s) and will generate errors if the Score and/
or part(s) are no longer valid (e.g. if a DynamicPart has been deleted). DynamicParts are never “re-used.” For example, if you
delete a DynamicPart and create a new DynamicPart, the old ManuScript DynamicPart object will not refer to the newly-created
DynamicPart.

for each variable in iterates through all valid DynamicPart objects for the Score, always starting first with the full score. Add-
ing or deleting parts while iterating will have undefined results, and is not recommended.

Array access [int n] returns the nth part (0 is always the full score), or null if the part does not exist.

Methods
CreateDefaultParts()

Creates the default set of dynamic parts, as created automatically by Sibelius when clicking the New Part button in the Parts
window. This method does nothing and returns False if the Score has no staves.

CreatePartFromStaff(staff)

Creates a dynamic part from the specified Staff object, if valid. Returns the new DynamicPart object for success, or null for
failure.

DeletePart(dynamic part)

Deletes the specified part, if it’s valid. Returns True for success, False for failure. This method fails is the specified dynamic
part is the currently active part for the Score, or is the full score, or refers to a different Score.

Variables
NumChildren Returns the number of DynamicPart objects for the Score returned by iteration (read only).

Object Reference

60

DynamicPart

Accessed from a DynamicPartCollection object.

for each variable in returns the Staff objects in the dynamic part, in top to bottom order. Warning: this can return a Staff that
is not included in Score.CurrentDynamicPart.

Methods
AddStaffToPart(staff)

Adds the specified staff to the bottom of the dynamic part. Returns False for failure. This method will cause an error if it is
called on the full score, or if attempting to add a staff that is already present in the part or a staff from a different score.

DeleteStaffFromPart(staff)
Deletes the specified staff from the dynamic part. Returns False for failure. This method will cause an error if called on the full
score, or if attempting to delete a staff that is not present in the part, or if deleting the last staff in a part, or attempting to delete
a part from a different score.

IncludesStaff(staff)

Returns True if the specified staff is contained in this dynamic part.

Variables
IsFullScore Returns True if this is the full score (read only).

IsSelectedInPartsWindow Returns True if the part is selected in the Parts window (read only).

StaveCount Returns the number of staves in the part (read only).

ParentScore Returns the Score object containing this dynamic part (read only).

File

61

File

Retrievable using for each on a folder.

Methods
Delete()

Deletes a file, returning True if successful.

Rename(newFileName)

Renames a file, returning True if successful.

Variables
CreationDate Returns the file’s creation date and time as a DateTime object, in local time (read only).

CreationDateAndTime A string giving the date and time the file was last modified in GMT (read only).

ModificationDate Returns the file’s modification date and time as a DateTime object, in local time (read
only).

Name The complete pathname of the file, no extension (read only).

NameWithExt The complete pathname of the file, with extension (read only).

NameNoPath Just the name of the file, no extension (read only).

Path Returns just the path to the file (read only).

Type A string giving the name of the type of the object; File for file objects (read only).

Object Reference

62

Folder

Retrievable from methods of the Sibelius object.

for each variable in produces the Sibelius files in the folder, as File objects.

for each type variable in produces the files of type type in the folder, where type is a Windows extension. Useful values are SIB
(Sibelius files), MID (MIDI files) or OPT (PhotoScore files), because they can all be opened directly by Sibelius. On the Macintosh
files of the corresponding Mac OS Type are also returned (so, for example, for each MID f will return all files whose names
end in .MID, and all files of type “Midi”).

Both these statements return subfolders recursively.

Methods
FileCount(Type)

Returns the number of files of type Type in the folder. As above, useful values are SIB, MID or OPT.

Variables
FileCount The number of Sibelius files in the folder (read only).

Name The name of the folder (read only).

Type A string giving the name of the type of the object; Folder for folder objects (read only).

GuitarFrame

63

GuitarFrame

Derived from a BarObject. This refers to chord symbols as created by Create > Chord Symbol, whether or not they show a guitar
chord diagram (guitar frame), but is called GuitarFrame in ManuScript for historical reasons.

Methods
GetChromaticPitchesOfChordInClosePosition(consider root)

Returns an array containing the chromatic pitches of the notes in the chord, assuming a voicing in close position. If consider
root is True (it defaults to False), the pitches returned will be offset according to the chromatic value of the root note on which
the chord is based.

GetEndStringForNthBarre(barreNum)

Returns the string number on which the nth barré ends.

GetPitchOfNthString(stringNum)

Returns the pitch of the given (open) string stringNum, as a MIDI pitch.

GetPositionOfFingerForNthBarre(barreNum)

Returns the fret position that the nth barré occupies.

GetPositionOfFingerOnNthString(stringNum)

Returns the position of the black dot representing the finger position on a given string stringNum, relative to the top of the
frame. A return value of 0 means the string is open (i.e. a hollow circle appears at the top of the diagram), and -1 means that
the string is not played (i.e. an X appears at the top of the diagram). Used in conjunction with GetPitchOfNthString(),
you can calculate the resulting pitch of each string.

GetStartStringForNthBarre(barreNum)

Returns the string number from which the nth barré begins.

IsNthStringPartOfBarre(stringNum)

Returns True if the given string is part of a barré.

NthStringHasClosedMarkingAtNut(nth string)

Returns True if there’s an X marking at the top or left of the specified string.

NthStringHasOpenMarkingAtNut(nth string)

Returns True if there’s an O marking at the top or left of the specified string.

Variables
BassAsString The note name of the chord symbol’s altered bass note (e.g. “F”).

ChordNameAsStyledString The name of the chord represented by this chord symbol as it appears in the score, e.g.
“Cm^7” (read only).

ChordNameAsPlainText The name of the chord represented by this chord symbol as it appears when editing the
chord symbol, i.e. in its plain text representation, e.g. “Cmmaj7” (read only).

ChromaticRoot The chromatic pitch (C = 0, B = 11) of the chord symbol’s root note (read only).

ChromaticBass The chromatic pitch (C = 0, B = 11) of the chord symbol’s altered bass note (read only).

DiatonicRoot The diatonic pitch (-1 for B#, 0 for C, 4 for G, 7 for Cb, etc.) of the chord symbol’s root note
(read only).

DiatonicBass The diatonic pitch (-1 for B#, 0 for C, 4 for G, 7 for Cb, etc.) of the chord symbol’s altered
bass note (read only).

Object Reference

64

Fingerings The fingerings string for this chord. This is a textual string with as many characters as the
guitar frame has strings (i.e. six for standard guitars). Each character corresponds to a gui-
tar string. Use - to denote that a string has no fingering.

FrameIsVisible True if the chord symbol is currently showing a guitar chord diagram (read only).

Horizontal True if the guitar chord diagram is horizontally orientated, False if it is vertically orien-
tated (read/write).

LowestVisibleFret The number of the top fret shown in the guitar chord diagram; setting the special value -1
resets the lowest visible fret to the default for that chord diagram (read/write).

NumBarresInChord The number of unique barrés in the guitar chord diagram (read only).

NumberOfFrets The number of frets in the guitar chord diagram, i.e. the number of horizontal lines; set-
ting the special value -1 resets the number of frets to the default for that chord diagram
(read/write).

NumberOfStrings The number of strings in the guitar chord diagram, i.e. the number of vertical lines (read
only).

NumPitchesInClosePosition The number of unique pitches in the chord, assuming a voicing in close position with no
duplicates.

Recognized Returns True if the chord symbol is a specific recognized chord type, and False other-
wise, i.e. if the chord symbol is shown in red in the score because Sibelius is unable to parse
the user’s input (read only).

RootAsString The note name of the chord symbol’s root (e.g. “C#”).

ScaleFactor The scale factor of the guitar chord diagram (as adjustable via the Scale parameter on the
General panel of Properties), expressed as a percentage (read/write).

ShowFingerings Set to True if the fingerings string should be displayed, False otherwise (read only).

Suffixes Returns an array containing a list of the suffix elements present in the chord (read only). If
the chord symbol is an unrecognised chord type, the array returned will be empty. The
values that can be returned in the array are as follows:

halfdim dim
add6/9 6/9
sus2/4 aug
omit5 alt
omit3 b13
maj13 #11
add13 13
maj11 11
dim13 #9
dim11 b9
maj9 b6
add9 #5
maj7 b5
dim9 #4
dim7 nc
sus9 9
sus4 7
add4 6
sus2 5
add2 m
maj /

GuitarFrame

65

SuffixText The suffix part of the chord symbol as it appears in the score, or an empty string if the
chord isn’t recognised (read only).

TextIsVisible True if the chord symbol is currently showing a text chord symbol (read only).

VisibleComponents The visible parts of the chord symbol, i.e. whether it displays a text chord symbol
only (TextOnly), a guitar chord diagram only (FrameOnly), both a text chord symbol
and a guitar chord diagram (FrameAndText), or whether or not the chord symbol shows
a guitar chord diagram based on the type of instrument to which it is attached
(InstrumentDependent) (read/write).

Object Reference

66

GuitarScaleDiagram

Derived from a BarObject. This refers to guitar scale diagrams as created by Create > Guitar Scale Diagram.

Methods
GetDotFingeringsOnNthString(nth string)

Returns an array of strings containing the text that has been entered on the dots on a given string.

GetDotSymbolsOnNthString(nth string)

Returns an array of values describing the appearance of each of the dots on a given string. The possible values are
DotStyleCircle, DotStyleFilledCircle, DotStyleSquare, DotStyleFilledSquare,
DotStyleDiamond, and DotStyleFilledDiamond.

GetPitchesOfDotsOnNthString(nth string)

Returns an array containing the pitches of all the dots on a given string, in ascending order of pitch.

GetPitchOfNthString(stringNum)

Returns the pitch of the given (open) string stringNum, as a MIDI pitch.

Variables
Fingerings The fingerings string for this scale diagram. This is a textual string with as many characters as

the scale diagram has strings (i.e. six for standard guitars). Each character corresponds to a
guitar string. Use - to denote that a string has no fingering.

Horizontal True if the guitar scale diagram is horizontally orientated, False if it is vertically orientated
(read/write).

LowestVisibleFret The number of the top fret shown in the guitar scale diagram; setting the special value -1
resets the lowest visible fret to the default for that scale diagram (read/write).

NumberOfFrets The number of frets in the guitar scale diagram, i.e. the number of horizontal lines; setting the
special value -1 resets the number of frets to the default for that scale diagram (read/write).

NumberOfStrings The number of strings in the guitar scale diagram, i.e. the number of vertical lines (read only).

Root Returns the chromatic pitch (C = 0) of the scale’s root note (read only).

ScaleFactor The scale factor of the guitar scale diagram (as adjustable via the Scale parameter on the Gen-
eral panel of Properties), expressed as a percentage (read/write).

ScaleType Returns the type of the guitar scale diagram, as specified in the list of GuitarScaleDiagram
type values on page 140 (read only).

ShowFingerings Set to True if the fingerings string should be displayed, False otherwise (read only).

InstrumentChange

67

InstrumentChange

Derived from a Bar object. Provides information about any instrument changes that may exist in the score.

Methods
None.

Variables
StyleId Returns the style ID of the new instrument; see Instrument types on page 122 (read only).

TextLabel Returns the text that appears above the staff containing the instrument change in the score
(read only).

Object Reference

68

InstrumentTypeList

Contains a list of InstrumentType objects common to a given score.

for each type variable in returns each instrument type in the list, in alphabetical order by the instrument type’s style ID.

Array access [int n] returns the nth instrument type, in the same order as using a for each iterator, or null if the instrument
type does not exist.

Methods
None.

Variables
NumChildren Returns the number of unique instrument types in the list (read only).

InstrumentType

69

InstrumentType

Provides information about an individual instrument type.

Methods
PitchOfNthString(string num)

Returns the pitch of a given string in a tablature staff, with string number 0 being the lowest string on the instrument.

Variables
Balance Returns the instrument’s default balance, in the range 0–100 (read only).

Category Returns an index representing the category of the staff type belonging to this instrument type;
0 = pitched; 1 = percussion; 2 = tablature (read only).

ChromaticTransposition Returns the number of half-steps (semitones) describing the transposition of transposing
instruments; e.g. for Bb Clarinet, this returns -2 (read only).

ChromaticTranspositionInScore
Returns the number of half-steps (semitones) describing the transposition of transposing
instruments in the score (as opposed to the parts). Typically this is only used by instruments
that transpose by octaves, so this will return e.g. 12 for piccolo or -12 for guitars (read only).

ComfortableRangeHigh Returns the highest comfortable note (MIDI pitch) of the instrument (read only).

ComfortableRangeLow Returns the lowest comfortable note (MIDI pitch) of the instrument (read only).

ConcertClefStyleId Returns the style ID of the normal clef style of the instrument (read only).

DefaultSoundId Returns the default sound ID used by the instrument (read only).

DiatonicTransposition Returns the number of diatonic steps describing the transposition of transposing instruments;
e.g. for Bb Clarinet, this returns -1 (read only).

DiatonicTranspositionInScore
Returns the number of diatonic steps describing the transposition of transposing instruments
in the score (as opposed to the parts). This will return 0 for all pre-defined instruments (read
only).

DialogName Returns the name of the instrument as displayed in the Instruments as Staves dialog
in Sibelius (read only).

FullName Returns the name of the instrument as visible on systems showing full instrument names (read
only).

HasBracket Returns True if the instrument has a bracket (read only).

IsVocal Returns True if the instrument type used has the Vocal staff option switched on, meaning
that e.g. the default positions of dynamics should be above the staff rather than below (read
only).

NumStaveLines Returns the number of staff lines in the staff (read only).

NumStrings Returns the number of strings in a tablature staff (read only).

OtherClefStyleId Returns the style ID of the clef style of the second staff of grand staff instruments, e.g. piano
(read only).

Pan Returns the instrument’s default pan setting, in the range –127 (hard left) to 127 (hard right)
(read only).

ProfessionalRangeHigh Returns the highest playable note (MIDI pitch) of the instrument for a professional player
(read only).

Object Reference

70

ProfessionalRangeLow Returns the lowest playable note (MIDI pitch) of the instrument for a professional player (read
only).

ShortName Returns the name of the instrument as visible on systems showing short instrument names
(read only).

StyleId Returns the style ID of the instrument; see Global constants on page 119 (read only).

TransposingClefStyleId Returns the style ID of the clef to be used when Notes > Transposing Score is switched on
(read only).

HitPointList

71

HitPointList

Retrievable as the HitPoints variable of a score. It can be used in a for each loop or as an array with the [n] operator – this
gives access to a HitPoint object. The HitPoint objects are stored in time order, so be careful if you remove or modify the time of
the objects inside a loop. If you want to change the times of all the hit points by the same value then use the ShiftTimes func-
tion.

Methods
Clear()

Removes all hit points from the score.

CreateHitPoint(timeMs,label)

Creates a hit point in the score at the given time (specified in milliseconds) with a specified string label. Returns the index in
the HitPointList at which the new hit point was created.

Remove(index)

Removes the given hit point number.

ShiftTimes(timeMs)

Adds the given time (in milliseconds) onto all the hit points. If the time is negative then this is subtracted from all the hit
points.

Variables
NumChildren Number of hit points (read only).

Object Reference

72

HitPoint

Individual element of the HitPointList object.

Methods
None.

Variables
Bar The bar in which this hit point occurs (read only).

Label The name of the hit point (read/write).

Position The position within the bar at which this hit point occurs (read only).

Time The time of the hit point in milliseconds. Note that changing this value may change the posi-
tion of the hit point in the HitPointList (read/write).

KeySignature

73

KeySignature

Derived from a BarObject.

Methods
None

Variables
AsText The name of the key signature as a string (read only).

IsOneStaffOnly True if this key signature belongs to one staff only (read only).

Major True if this key signature is a major key (read only).

Sharps The number of sharps (positive) or flats (negative) in this key signature (read only).

Object Reference

74

Line

Anything you can create from the Create > Line dialog is a line object, eg. CrescendoLine, DiminuendoLine, etc. These objects are
derived from a BarObject.

Methods
None.

Variables
Duration The total duration of the line, in 1/256th quarters (read/write).

EndBarNumber The bar number in which the line ends (read only).

EndPosition The position within the final bar at which the line ends (read only).

RhDy The vertical graphic offset of the right hand side of the line from the centre staff line, in units of
1/32 spaces, positive going upwards (read/write).

StyleId The identifier of the line style associated with this line (read only).

StyleAsText The name of the line style associated with this line (read only).

LyricItem

75

LyricItem

Derived from a BarObject

Methods
None.

Variables
Duration The total duration of the lyric line, in 1/256th quarters (see Line on page 74) (read/write).

NumNotes Gives the number of notes occupied by this lyric item (read/write). Note that changing this
value will not automatically change the length of the lyric line; you also need to set the lyric
line’s Duration variable to the correct length.

StyleAsText The text style name (read/write).

StyleId The identifier of the text style of this lyric (read/write).

SyllableType An integer indicating whether the lyric is the end of a word (EndOfWord) or the start or mid-
dle of one (MiddleOfWord) (read/write). This affects how the lyric is jusitifed, and the
appearance of hyphens that follow it. EndOfWord and MiddleOfWord are global constants;
see SyllableTypes for LyricItems on page 137.

Text The text as a string (read/write).

Object Reference

76

NoteRest

Derived from a BarObject. A NoteRest contains Note objects, stored in order of increasing diatonic pitch.

for each variable in returns the notes in the NoteRest.

Methods
AddAcciaccaturaBefore(sounding pitch,[duration[,tied [,voice [,diatonic pitch[,string number[,force stem dir]]]]]])

Adds a grace note with a slash on its stem (acciaccatura) before a given NoteRest. The duration should be specified as normal,
for example, 128 would create a grace note with one beam/flag. The optional tied parameter should be True if you want the
note to be tied. Voice 1 is assumed unless the optional voice parameter (with a value of 1, 2, 3 or 4) is specified. If force stem dir
is set to True (the default), stems of graces notes in voices 1 and 3 will always point upwards, and stems of notes in voices 2 and
4, downwards. You can also set the diatonic pitch, i.e. the number of the “note name” to which this note corresponds, 7 per
octave (35 = middle C, 36 = D, 37 = E and so on). If a diatonic pitch of zero is given then a suitable diatonic pitch will be calcu-
lated from the MIDI pitch. The optional string number parameter gives a string number for this note, which is only meaning-
ful if the note is on a tablature stave. If this parameter is not supplied then a default string number is calculated based on the
current tablature stave type and the guitar tab fingering options (specified on the Note Input page of File > Preferences).
Returns the Note object created (to get the NoteRest containing the note, use Note.ParentNoteRest).

Note that adding a grace note before a NoteRest will always create an additional grace note, just to the left of the note/rest to
which it is attached. If you wish to create grace notes with more than one pitch, you should call AddNote on the object
returned.

AddAppoggiaturaBefore(sounding pitch,[duration[,tied [,voice [,diatonic pitch[,string number[,force stem dir]]]]]])

Identical to AddAcciaccaturaBefore, only no slash is added to the note’s stem.

AddNote(pitch[,tied[,diatonic pitch[,string number]]])

Adds a note with the given MIDI pitch (60 = middle C), e.g. to create a chord. The optional second parameter specifies
whether or not this note is tied (True or False). The optional third parameter gives a diatonic pitch, i.e. the number of the ‘note
name’ to which this note corresponds, 7 per octave (35 = middle C, 36 = D, 37 = E etc.). If this parameter is 0 then a default
diatonic pitch will be calculated from the MIDI pitch. The optional fourth parameter gives a string number for this note,
which is only meaningful if the note is on a tablature stave. If this parameter is not supplied then a default string number is
calculated based on the current tablature stave type and the guitar tab fingering options (specified on the Notes page of File >

Preferences). Returns the Note object created.

Delete()

Deletes all the notes in the NoteRest, converting the entire chord into a rest of similar duration.

FlipStem()

Flips the stem of this NoteRest – this acts as a toggle.

GetArticulation(articulation number)

Returns True or False depending on whether the given articulation is currently set on this note. The valid articulation
numbers are defined in Articulations on page 136.

NoteRest[array element]

Returns the nth note in the chord, in order of increasing diatonic pitch (counting from 0). For example, NoteRest[0]
returns the lowest note (in terms of diatonic pitch – see AddNote below).

RemoveNote(note)

Removes the specified Note object.

SetArticulation(articulation number,set)

If set is True, turns on the given articulation; otherwise turns it off. The valid articulation numbers are defined in Articula-
tions on page 136.

NoteRest

77

Transpose(degree, interval type[,keep double accs])

Transposes the entire NoteRest up or down by a specified degree and interval type. To transpose up, use positive values for
degree; to transpose down, use negative values. Note that degrees are 0-based, so 0 is equal to a unison, 1 to a second and so
on. For descriptions of the various available interval types, see Global constants on page 119. By default, Sibelius will
transpose using double sharps and flats where necessary, but this behavior may be suppressed by setting the keep double accs
flag to False.

For help in calculating the interval and degree required for a particular transposition, see the documentation for
the Sibelius.CalculateInterval and Sibelius.CalculateDegree methods.

Variables
ArpeggioDx The horizontal offset of the arpeggio line on the NoteRest (read/write).

ArpeggioType The type of note-attached arpeggio line present on the NoteRest. Values are ArpeggioType-
None, ArpeggioTypeNormal, ArpeggioTypeUp, ArpeggioTypeDown (read/write).

ArpeggioTopDy The vertical offset of the top of the note-attached arpeggio line on the NoteRest (read/write).

ArpeggioBottomDy The vertical offset of the bottom of the note-attached arpeggio line on the NoteRest (read/
write).

ArpeggioHidden Returns True if the note-attached arpeggio line on the NoteRest is hidden (read/write).

Articulations Enables you to copy a set of articulations from one NoteRest to another (read/write), e.g:

destNr.Articulations = sourceNr.Articulations;

Beam Takes values StartBeam, ContinueBeam, NoBeam and SingleBeam. (see Global con-
stants on page 119 for details). These correspond to the keys 7, 8, * (/ on Mac) and / (* on
Mac) on the third (F9) Keypad layout.

DoubleTremolos Gives the number of double tremolo strokes starting at this note, in the range 0–7. Means noth-
ing for rests. To create a double tremolo between two successive notes, ensure they have the
same duration and set the DoubleTremolos of the first one (read/write).

Duration The duration of the note rest (read only).

FallDx The horizontal offset of a fall, if present on the NoteRest (read/write).

FallType The type of note-attached fall present on the NoteRest. Values are FallTypeNone,
FallTypeNormal and FallTypeDoit (read/write)

FeatheredBeamType Returns one of three values, based on whether a note is set to produce a feathered beam. Values
are FeatheredBeamNone (0), FeatheredBeamAccel (1) and FeatheredBeamRit
(2) (read/write).

HasStemlet Returns True if the note is showing a stemlet, according either to the state of the Use stem-
lets on beamed rests option on the Beams and Stems page of Engraving Rules or the
stemlet button on the Keypad (read only).

Highest The highest Note object in the chord (read only).

Lowest The lowest Note object in the chord (read only).

NoteCount The number of notes in the chord (read only).

GraceNote True if it’s a grace note (read only).

IsAcciaccatura True if it’s an acciaccatura, i.e. a grace note with a slash through its stem (read only).

IsAppoggiatura True if it’s an appoggiatura, i.e. a grace note without a slash through its stem (read only).

ParentTupletIfAny If the NoteRest intersects a tuplet, the innermost Tuplet object at that point in the score is
returned. Otherwise, null is returned (read only).

Object Reference

78

PositionInTuplet Returns the position of the NoteRest relative to the duration and scale-factor of its parent
tuplet. If the NoteRest does not intersect a tuplet, its position within the parent Bar is returned
as usual (read only).

ScoopDx The horizontal offset of a scoop or plop, if present on the NoteRest (read/write).

ScoopType The type of note-attached scoop present on the NoteRest. Values are ScoopTypeNone,
ScoopTypeNormal, ScoopTypePlop (read/write).

StemFlipped True if the stem is flipped (read only).

StemletType Provides information about whether the NoteRest is set to display a stemlet using the options
on the Keypad. Returns either StemletCustomOff (in which case the NoteRest definitely
does not show a stemlet), StemletCustomOn (in which case the NoteRest definitely does
show a stemlet), or StemletUseDefault (in which case you should use the read-only vari-
able HasStemlet to determine whether the NoteRest currently shows a stemlet) (read/
write).

SingleTremolos Gives the number of tremolo strokes on the stem of this note, in the range -1 (for “z on stem”)
to 7. Means nothing for rests (read/write).

Note

79

Note

Only found in NoteRests. Correspond to individual noteheads.

Methods
Delete()

Removes a single note from a chord.

Transpose(degree, interval type[,keep double accs])

Transposes and returns a single Note object up or down by a specified degree and interval type*. To transpose up, use positive
values for degree; to transpose down, use negative values. Note that degrees are 0-based, so 0 is equal to a unison, 1 to a second
and so on. For descriptions of the various available interval types, see Global constants on page 119. By default, Sibelius
will transpose using double sharps and flats where necessary, but this behavior may be suppressed by setting the keep double
accs flag to False. For help in calculating the interval and degree required for a particular transposition, see the documenta-
tion for the Sibelius.CalculateInterval and Sibelius.CalculateDegree methods.

* N.B.: Individual note objects cannot be transposed diatonically.

Variables
Accidental The accidental, for which global constants such as Sharp, Flat and so on are defined; see

Global constants on page 119 (read only).

AccidentalStyle The style of the accidental (read/write). This can be any of following four global constants:
NormalAcc, HiddenAcc, CautionaryAcc (which forces an accidental to appear always)
and BracketedAcc (which forces the accidental to be drawn inside brackets).

Bracketed The bracketed state of the note, as shown on the F9 layout of the Keypad (read/write).

DiatonicPitch The diatonic pitch of the note, i.e. the number of the “note name” to which this note corre-
sponds, 7 per octave (35 = middle C, 36 = D, 37 = E and so on) (read only).

Name The pitch of the note as a string (read only).

NoteStyle The index of the notehead style of this Note (read/write). The styles correspond to those acces-
sible from the Notes panel of the Properties window in Sibelius; see Note Style names on
page 136 for a complete list of the defined NoteStyles.

NoteStyleName The name of the notehead style of this Note (read/write). If an attempt is made to apply a non-
existant style name, the note in question will retain its current notehead.

OriginalDeltaSr The Live start position of this notehead (in 1/256th quarters), as shown in the Playback
panel of Properties (read/write). This value can be positive or negative, indicating that the note
is moved forwards or backwards.

OriginalDuration The Live duration of this notehead (in 1/256th quarters), as shown in the Playback panel of
Properties (read/write).

OriginalVelocity The Live velocity of this notehead (in MIDI volume units, 0-127), as shown in the Playback
panel of Properties (read/write). Note that the word “original” refers to the fact that this data is
preserved from the original performance if the score was imported from a MIDI file or input
via Flexi-time. For further details on this value, and the ones following below, read the Live
Playback section in Sibelius Reference.

ParentNoteRest The NoteRest object that holds this note (read only).

Pitch The MIDI pitch of the note, in semitones, 60 = middle C (read only).

Slide Is True if the note has a slide, False otherwise (read only).

Object Reference

80

StringNum The string number of this note, only defined if the note is on a tablature stave. If no string is
specified, reading this value will give –1. Strings are numbered starting at 0 for the bottom
string and increasing upwards (read only).

Tied Is True if the note is tied to the following note (read only).

WrittenAccidental The accidental, taking transposition into account (read only).

WrittenDiatonicPitch The written diatonic pitch of the note, taking transposition into account if Score.Trans-
posingScore is True (35 = middle C) (read only).

WrittenName The written pitch of the note as a string (taking transposition into account) (read only).

WrittenPitch The written MIDI pitch of the note, taking transposition into account if Score.Transpos-
ingScore is True (60 = middle C) (read only).

UseOriginalDeltaSrForPlayback Is True if the Live start position of this Note should be used for Live Playback. Cor-
responds to the Live start position checkbox in the Playback panel of the Properties window.

UseOriginalDurationForPlayback Is True if the Live duration of this Note should be used for Live Playback. Corre-
sponds to the Live duration checkbox in the Playback panel of the Properties window.

UseOriginalVelocityForPlayback Is True if the Live velocity of this Note should be used for Live Playback. Corre-
sponds to the Live velocity checkbox in the Playback panel of the Properties window.

PageNumberChange

81

PageNumberChange

Provides access to get and set the attributes of a page number change at the end of a bar or on a blank page.

Methods
SetFormatChangeOnly(format change only)

If format change only is True, this has the same effect as switching off the New page number check box on the Page Number
Change dialog in Sibelius. The page numbering will therefore continue counting consecutively, but it’s possible to
(for example) hide a group of page numbers and restore visibility at a later point on the score without having to keep track of
the previous page numbers.

SetHideOrShow(page number visibility)

Takes one of the three Page number visibility global constants to determine the visibility of the initial page number change
and its subsequent pages; see Global constants on page 119.

SetPageNumber(page number)

Takes an integral number specifying the new number you wish to assign to the page.

SetPageNumberFormat(format)

Takes one of the four Page number format global constants to change the format used to display the page number change;
see Global constants on page 119.

Variables
HideOrShow Returns one of the three Page number visibility global constants; see Global constants on

page 119 (read only).

PageNumber Returns the page number expressed as an integer. For example, page x when using Roman
numerals would be 10, or 24 with alphabetics (read only).

PageNumberAsString Returns the page number change as visible on the corresponding page in Sibelius (read only).

PageNumberBlankPageOffset Returns the blank page offset of the page number change, or 0 if there are no blank pages
following the bar contaning the page number change (read only).

PageNumberFormat Returns one of four Page number format global constants describing the format of the page
number change; see Global constants on page 119 (read only).

Object Reference

82

PluginList

An array that is obtained from Sibelius.Plugins. It can be used in a for each loop or as an array with the [n] operator
to access each Plugin object.

Methods
Contains(pluginName)

Returns True if a plug-in with the given name is installed. This can be used to query whether a plugin is installed before you
try to call it.

Variables
NumChildren Number of plug-ins (read only).

Plugin

83

Plugin

This represents an installed plugin. Typical usage:

for each p in Sibelius.Plugins
{

trace("Plugin: " & p.Name);
}

Methods
The following methods are intended to allow you to check the existence of specific methods, data and dialogs in plug-ins, which
allows you to check in advance that e.g. calling a method in another plug-in will succeed, and fail gracefully if the method is not
found:

MethodExists(method)

Returns True if the specified method exists in the current Plugin object.

DataExists(data)

Returns True if the specified data exists in the current Plugin object.

DialogExists(dialog)

Returns True if the specified dialog exists in the current Plugin object.

Variables
File The File object corresponding to the file that the plug-in was loaded from (read only).

Name The name of the plug-in (read only).

Object Reference

84

RehearsalMark

Derived from a BarObject and found in the system staff only. RehearsalMarks have an internal numbering and a visible text repre-
sentation, both of which can be read from ManuScript.

Methods
None.

Variables
Mark The internal number of this rehearsal mark. By default rehearsal marks are consecutive (with

the first one numbered zero), but the user can also create marks with specific numbers.

MarkAsText The textual representation of this rehearsal mark as drawn in the score. This is determined by
the House Style > Engraving Rules options, and can take various forms (numerical or alpha-
betical).

Score

85

Score

A Score contains one SystemStaff and one or more Staff objects.

for each variable in returns each staff in the score or the current dynamic part in turn (not the system staff).

for each type variable in returns the objects in the score in chronological order, from the top staff to the bottom staff (for
simultaneous objects) and then from left to right (again, not including the system staff).

Methods
AddBars(n)

Adds n bars to the end of the score.

ApplyStyle(style file,"style",["style"])

Imports named styles from the given house style file (.lib) into the score. The style file parameter can either be a full path to
the file, or just the name of one of the styles that appears in the House Style > Import House Style dialog. You can import as
many “style” elements as you like in the same method. Style names are as follows:

HOUSE, TEXT, SYMBOLS, LINES, NOTEHEADS, CLEFS, DICTIONARY, SPACINGRULE, DEFAULTPARTAPPEARANCE,
INSTRUMENTSANDENSEMBLES, MAGNETICLAYOUTOPTIONS or ALLSTYLES.

For instance:

score2.ApplyStyle("C:\NewStyle.lib", "HOUSE", "TEXT");

Note that the constant HOUSE refers, for historical reasons, only to those options in the House Style > Engraving Rules and
Layout > Document Setup dialogs, not the entire house style. To import the entire House Style, use the ALLSTYLES
constant.

ClefStyleId(clef style name)

Returns the identifier of the clef style with the given name, or the empty string if there is no such clef style.

CreateInstrument(style ID[,change names,["full name",["short name"]]])

Creates a new instrument, given the style ID of the instrument type required (see Instrument types on page 122). If you
want to supply the instrument names to be used in the score, set the optional change names parameter to True, then supply
strings for the full name and short name. Returns True if the instrument was created successfully and False if the instru-
ment type could not be found.

CreateInstrumentAtBottom(style ID[,change names,["full name",["short name"]]])

Behaves the same way as CreateInstrument, only the new instrument is always created below all other instruments that
currently exist in the score. This can be useful when programatically copying a list of staves/instruments from one score to
another, as you can guarantee the ordering of the staves will be the same in both scores.

CreateInstrumentAtBottomReturnStave(style ID[,change names,["full name",["short name"]]])

As above, but returns the Stave object created, or null if unsuccessful.

CreateInstrumentAtTop(style ID[,change names,["full name",["short name"]]])

Behaves in exactly the same way as CreateInstrumentAtBottom, only the new instrument is always created above all
other instruments that currently exist in the score.

CreateInstrumentAtTopReturnStave(style ID[,change names,["full name",["short name"]]])

As above, but returns the Stave object created, or null if unsuccessful.

CreateInstrumentReturnStave(style ID[,change names,["full name",["short name"]]])

Like CreateInstrument, but returns the Stave object created, or null if unsuccessful. Note that if the instrument being
created contains more than one staff (e.g. piano or harp), the top stave of the instrument in question will be returned.

ExtractParts([show_dialogs],[parts path])

Object Reference

86

Extracts parts from the score. The first optional parameter can be False, in which case the parts are extracted without show-
ing an options dialog. The second optional parameter specifies a folder into which to extract the parts (must end with a trail-
ing folder separator).

GetLocationTime(bar number[,position])
Returns the time of a given location in the score in milliseconds.

GetVersions()

Returns the score’s VersionHistory object (see VersionHistory on page 115).

InsertBars(n,barNum[,length])

Inserts n bars before bar number barNum. If no length has been specified, the bar will be created with the correct length
according to the current time signature. However, irregular bars may also be created by specifying a value for length.

LineStyleId(line style name)

Returns the identifier of the line style with the given name, or the empty string if there is no such line style.

NoteStyleIndex(notehead style name)

Returns the index of the note style with the given name, or –1 if there is no such note style.

NthStaff(staff index from 1)

Returns the nth staff of the score or the current dynamic part.

RemoveAllHighlights()

Removes all highlights in this score.

RenameTextStyle("old name","new name")

Renames a text style to a new name.

Save(filename)

Saves the score, overwriting any previous file with the same name.

SaveAs(filename,type[,use_defaults,foldername])

Saves the score in a specified format, overwriting any previous file with the same name. The optional argument use_defaults
only applies to graphics files, and specifies whether or not the default settings are to be used. When set to False, the Export
Graphics dialog will appear and allow the user to make any necessary adjustments. The optional foldername specifies the
folder in which the file is to be saved. The foldername parameter must end with a path separator (i.e. “\\” on Windows).

The possible values for type are:

SIBL Sibelius format (current version)
EMF EMF
BMP Windows bitmap
PICT PICT format
PNG PNG format
Midi MIDI format
EPSF EPS format
TIFF TIFF format

So, to save a file using the current Sibelius file format, you would write score.SaveAs(“filename.sib”, “SIBL”);

SaveAsAudio(filename[,include all staves[,play from start]])

Creates a WAV file (PC) or AIFF file (Mac) of the score, using Sibelius’s File > Export > Audio feature. If include all staves is
True (the default), Sibelius will first clear any existing selection from the score so every instrument will be recorded; only
selected staves will otherwise be exported. When play from start is True (also the default), Sibelius will record the entire score
from beginning to end, otherwise from the current position of the playback line. Note that SaveAsAudio will only have an

Score

87

effect if the user’s current playback configuration consists of solely VST and/or AU devices. The functions returns True if suc-
cessful, otherwise False (including if the user clicks Cancel during export).

SaveAsSibelius2(filename[,foldername])

Saves the score in Sibelius 2 format, overwriting any previous file with the same name. The optional foldername specifies the
folder in which the file is to be saved. Note that saving as Sibelius 2 may alter some aspects of the score; see Sibelius Reference
for full details.

SaveAsSibelius3(filename[,foldername])

Saves the score in Sibelius 3 format. See documentation for SaveAsSibelius2 above.

SaveAsSibelius4(filename[,foldername])

Saves the score in Sibelius 4 format. See documentation for SaveAsSibelius2 above.

SaveAsSibelius5(filename[,foldername])

Saves the score in Sibelius 5 format. See documentation for SaveAsSibelius2 above.

SaveCopyAs(filename[,foldername])

Saves a copy of the score in the current version’s format without updating the existing score’s file name in Sibelius.

Score[array element]

Returns the nth staff (staff index from 0) e.g. Score[0].

SetPlaybackPos(bar number,sr)
Sets the position of the playback line to a given bar number and rhythmic (sr) position.

StaveTypeId(stave type name)

Returns the identifier of the stave type with the given name, or the empty string if there is no such stave type.

SystemCount(page num)

The number of systems on a page (the first page of the score is page 1).

SymbolIndex(symbol name)

Returns the index of the symbol with the given name, or –1 if there is no such symbol.

TextStyleId(text style name)

Returns the identifier of the text style with the given name, or the empty string if there is no such text style.

Variables
Arranger Arranger of score from File > Score Info (read/write).

Artist Artist of score from File > Score Info (read/write).

Composer Composer of score from File > Score Info (read/write).

Copyright Copyright of score from File > Score Info (read/write).

CurrentDynamicPart Returns or sets the current DynamicPart object for the Score (read/write). Sibelius will not
automatically display the new part: use Sibelius.ShowDynamicPart() to change the displayed
part.

CurrentPlaybackPosBar Returns the bar number in which the playback line is currently located.

CurrentPlaybackPosSr Returns the rhythmic position within the bar at which the playback line is currently located.

DynamicParts Returns a DynamicPartCollection object representing the dynamic parts present in the Score.
This object will always stay up to date, even if parts are added or deleted (read-only).

EnableScorchPrinting Corresponds to the Allow printing and saving checkbox in the Export Scorch Web Page
dialog (read/write).

Object Reference

88

FileName The filename for the score (read only).

FocusOnStaves is True if View > Focus on Staves is switched on (read/write). See
also Staves.ShowInFocusOnStaves.

HitPoints The HitPointList object for the score (read/write).

InstrumentChanges Value of Instrument changes from File > Score Info (read/write).

InstrumentTypes Returns an InstrumentTypeList containing the score’s instrument types, on which one
may execute a for each loop to get information about each instrument type within the score.

IsDynamicPart Returns True if the current active score view is a part (read only).

LiveMode Is True (1) if Play > Live Playback is on (read/write).

Lyricist Lyricist of score from File > Score Info (read/write).

MagneticLayoutEnabled Returns True if the current score has Layout > Magnetic Layout switched on (read/write).

NumberOfPrintCopies The number of copies to be printed (read/write).

OriginalProgramVersion The version of Sibelius in which this score was originally created, as an integer in the following
format:

(major version) * 1000 + (minor version) * 100 + (revision) * 10

So Sibelius 3.1.3 would be returned as 3130.

OtherInformation More information concerning the score from File > Score Info (read/write).

PageCount The number of pages in the score (read only).

PartName Value of Part Name from File > Score Info (read/write).

Publisher Publisher of score from File > Score Info (read/write).

Redraw Set this to True (1) to make the score redraw after each change to it, False (0) to disallow
redrawing (read/write).

ScoreDuration The duration of the score in milliseconds (read only).

ScoreEndTime The duration of the score, plus the score start time (see above), in milliseconds (read only).

ScoreHeight Height of a page in the score, in millimetres (read only).

ScoreStartTime The value of Timecode of first bar, from Play > Video and Time > Timecode and Duration,
in milliseconds (read only).

ScoreWidth Width of a page in the score, in millimetres (read only).

Selection The Selection object for the score, i.e. a list of selected objects (read only).

ShowInFocusOnStaves If True then this staff will be shown when Layout > Focus on Staves is switched on (see also
Score.FocusOnStaves). This variable cannot be set to False unless it is also True for
at least one other staff in the score (read/write).

ShowMultiRests Is True (1) if Layout > Show Multirests is on (read/write).

StaffCount The number of staves in the score (read only).

StaffHeight Staff height, in millimetres (read only).

SystemCount The number of systems in the score (read only).

SystemStaff The SystemStaff object for the score (read only).

Title Title of score from File > Score Info (read/write).

TransposingScore Is True (1) if Notes > Transposing Score is on (read/write).

Selection

89

Selection

for each variable in returns every BarObject (i.e. an object within a bar) in the selection.

for each type variable in produces each object of type type in the selection. Note that if the selection is a system selection (i.e.
surrounded by a double purple box in Sibelius) then objects in the system staff will be returned in such a loop.

Methods
Clear()

Removes any existing selection(s) from the current active score.

ClipboardContainsData([clipboard Id])

Returns True if the given clipboard contains data. As with the Copy and Paste methods, 0 (or no arguments) refers to Sibel-
ius’s internal clipboard, and all other numeric values will interrogate the temporary clipboard with the matching ID.

Copy([clipboard Id])

Copies the music within the current selection to Sibelius’s internal clipboard or a ManuScript-specific temporary clipboard,
which goes out of scope along with the Selection object itself. If no clipboard Id is specified, or if it is set to 0, the selection will
be copied to Sibelius’s internal clipboard. Any other numeric value you pass in will store the data in a temporary clipboard
adopting the ID you specify. Used in conjuction with Paste or PasteToPosition (see below).

Delete([remove staves])
Deletes the music currently selected in the active score. Akin to making a selection manually in Sibelius and hitting Delete. If
remove staves is omitted or set to True, Sibelius will completely remove any wholly selected staves from the score. If you wish
Sibelius to simply hide such staves instead, set this flag to False.

ExcludeStaff(staff number)

If a passage selection already exists in the current active score, an individual stave may be removed from the selection using
this method.

IncludeStaff(staff number)

If a passage selection already exists in the current active score, a non-consecutive stave may be added to the selection using
this method.

Paste([clipboard Id[,reset positions]])
Pastes the music from a given clipboard to the start of the selection in the current active score. If no clipboard Id is specified, or
if it is set to 0, the data will be pasted from Sibelius’s internal clipboard. Any other numeric value you pass in will take the data
from a temporary clipboard you must have previously created with a call to Copy (see above). Returns True if successful.

If reset positions is False, the positions of any objects that have been moved by the user in the source selection will be retained
in the copy. This is the default behaviour. If you wish Sibelius to reset objects to their default positions, set this flag to True.
This can be useful when copying one or more single objects (i.e. a non-passage selection).

Note that pasting into a score using this method will overwrite any existing music. Only one copy of the music will ever be
made, so if your selection happens to span more bars or staves than is necessary, the data will not be duplicated to fill the
entire selection area.

PasteToPosition(stave num, bar num, position[, clipboard Id[,reset positions]])

Pastes the music from a given clipboard to a specific location in the current active score. The optional parameters and pasting
behavior works in the same way as calls to Paste.

RestoreSelection()

Restores the selection previously recorded with a call to StoreCurrentSelection. Usefully called at the end of a plug-
in to restore the initial selection.

SelectPassage(start barNum[,end barNum[,top staveNum[,bottom staveNum[,start pos[,end pos]]]]])

Object Reference

90

Programmatically makes a passage selection around a given area of the current active score. When no end barNum is given,
only the start barNum will be selected. If neither a top- nor bottom staveNum has been specified, every stave in the score will
be selected, whereas if only a top staveNum has been supplied, only that one staff will be selected. Sibelius will begin the selec-
tion from the start of the first bar if no start pos has been given, similarly completing the selection at the end of the final bar if
no end pos has been supplied.

NB: The start pos and end pos you supply may be altered by ManuScript: Sibelius requires a passage selection to begin and end
at a NoteRest if it doesn’t encompass the entire bar.

SelectSystemPassage(start barNum[,end barNum[,start pos[,end pos]]])

Programmatically makes a system selection around a given area of the current active score. When no end barNum is given,
only the start barNum will be selected. Sibelius will begin the selection from the start of the first bar if no start pos has been
given, similarly completing the selection at the end of the final bar if no end pos has been supplied.

NB: The start pos and end pos you supply may be altered by ManuScript: Sibelius requires a passage selection to begin and end
at a NoteRest if it doesn’t encompass the entire bar.

StoreCurrentSelection()

Stores the current selection in the active score internally. Can be retrieved with a call to RestoreSelection (see below).
Usefully called at the start of a plug-in to store the initial selection.

Transpose(degree, interval type[,keep double accs[,transpose keys]])

Transposes the currently selected music up or down by a specified degree and interval type. To transpose up, use positive val-
ues for degree; to transpose down, use negative values. Note that degrees are 0-based, so 0 is equal to a unison, 1 to a second
and so on. For descriptions of the various available interval types, see Global constants on page 119. By default, Sibelius
will transpose using double sharps and flats where necessary, but this behavior may be suppressed by setting the keep double
accs flag to False. Sibelius will also transpose any key signatures within the selection by default, but can be overriden by set-
ting the fourth parameter to False.

For help in calculating the interval and degree required for a particular transposition, see the documentation for
the Sibelius.CalculateInterval and Sibelius.CalculateDegree methods.

Variables
BottomStaff The number of the bottom staff of a passage (read only).

FirstBarNumber The internal bar number of the first bar of a passage (read only).

FirstBarNumberString The external bar number (including any bar number format changes) of the first bar of a pas-
sage (read only).

FirstBarSr The position of the start of the passage selection in the first bar (read only).

IsPassage True if the selection represents a passage, as opposed to a multiple selection (read only).

IsSystemPassage True if the selection includes the system staff (read only).

LastBarNumber The internal bar number of the last bar of a passage (read only).

LastBarNumberString The external bar number (including any bar number format changes) of the last bar of a pas-
sage (read only).

LastBarSr The position of the end of the passage selection in the last bar (read only).

TopStaff The number of the top staff of a passage (read only).

Copying entire bars
Copying passages from one location in a score to another – or even from one score to another – is very simple. Here is an example
function demonstrating how one might go about achieving this:

CopyBar(scoreSrc, barFirstSrc, barLastSrc, scoreDest, barFirstDest,
barLastDest) // This is the function signature

Selection

91

{
sel = scoreSrc.Selection;
sel.SelectPassage(barFirstSrc.BarNumber, barLastSrc.BarNumber,

barFirstSrc.ParentStaff.StaffNum,
barLastSrc.ParentStaff.StaffNum);

sel.Copy(0);
selDest = scoreDest.Selection;
selDest.SelectPassage(barFirstDest.BarNumber, barLastDest.BarNumber,

barFirstDest.ParentStaff.StaffNum,
barLastDest.ParentStaff.StaffNum);

selDest.Paste(0);
}

Note that you may use any temporary clipboard or Sibelius’s own internal clipboard if the source and destination locations are in
the same score, however you can only use Sibelius’s internal clipboard if the data is being transfered between two individual
scores. This is because the temporary clipboards belong to the Selection object itself.

Copying multiple selections from one bar to another
Using a combination of the BarObject’s Select method and the Selection object’s Copy and PasteToPosition methods, it
is possible to copy an individual or multiple selection from one location in a score to another. Bear in mind that Paste will
always paste the material to the very start of the selection, so if you’re copying a selection that doesn’t start at the very beginning of
a bar, you’ll have to store the position of the first item and pass it to PasteToPosition when you later come to paste the music
to another bar.

This example code below copies all items from position 256 or later from one bar to another. It is assumed that sourceBar is a
valid Bar object, and destStaffNum and destBarNum contain the destination staff number and bar number respectively:

sel = Sibelius.ActiveScore.Selection; // Get a Selection object for this score
sel.Clear(); // Clear the current selection
clipboardToUse = 1; // This clipboard ID we’re going to use
copyFromPos = 256; // Copy all objects from this point in the source bar
posToCopyTo = 0; // Variable used to store the position of the first object copied
for each obj in sourceBar { // Iterate over all objects in the bar

if (obj.Position >= copyFromPos) { // Ignore objects before the start threshold
obj.Select(); // Select each relevant object in turn
if (posToCopyTo = 0) {

posToCopyTo = obj.Position; // Remember the position of the first item
{

}
}
sel.Copy(clipboardToUse); // Copy the objects we’ve selected to the clipboard

sel.PasteToPosition(destStaffNum, destBarNum, posToCopyTo, clipboardToUse); // And
paste them to the destination bar at the relevant offset

Object Reference

92

Sibelius

There is a predefined variable that represents the Sibelius program. You can use the Sibelius object to open scores, close scores,
display dialogs or (most commonly) to get currently open Score objects.

for each variable in returns each open score.

Methods
AppendLineToFile(filename,text[,use_unicode])

Appends a line of text to the file specified (adds line feed). See comment for AppendTextFile above for explanation of the
use_unicode parameter. Returns True if successful.

AppendLineToRTFFile(filename,text)

Appends a line of text to the file specified. Times New Roman 12pt is used, unless you specify a change of formatting. To
change formatting, use the following backslash expressions:

\B\ bold on

\I\ italic on

\U\ underline on

\n\ new line

\b\ bold off

\i\ italic off

\u\ underline off

\ffontname\ change to given font name (e.g. \fArial\ to switch to Arial)

\spoints\ set the font size to a specific point size (e.g. \s16\ to set the font to 16pts).

AppendTextFile(filename,text[,use_unicode])

Appends text to the file specified. If the optional Boolean parameter use_unicode is True, then the string specified will be
exported in Unicode format; if this parameter is False then it will be converted to 8-bit Latin-1 before being added to the
text file. This parameter is True by default. Returns True if successful.

CalculateDegree(source pitch, dest pitch, upward interval)

Takes two note names in the form of a string (e.g. C, G#, Bb, Fx or Ebb) and a boolean that should be True if the interval you’re
wishing to calculate is upward. Returns a 0-based number describing the degree between the two notes.
For example, CalculateDegree(“C#”, “G”, False) would return 3.

CalculateInterval(source pitch, dest pitch, upward interval)

Takes two note names in the form of a string (e.g. C, G#, Bb, Fx or Ebb) and a boolean that should be True if the interval you’re
wishing to calculate is upward. Returns a number representing an Interval Type (see Global constants on page 119). You
can use the value returned in calls to NoteRest.Transpose and Selection.Transpose.
For example, CalculateInterval(“Bb”, “G#”, True) would return IntervalAugmented.

Close()

Closes the current score.

Close(show dialogs)

Closes the current score; if the supplied flag is True then warning dialogs may be shown about saving the active score, and if
it is False then no warnings are shown (and the scores will not be saved).

CreateProgressDialog(caption,min value,max value)

Creates the progress dialog, which shows a slider during a long operation.

Sibelius

93

CreateRTFFile(filename)

Creates the Rich Text Format (RTF) file specified. Any existing file with the same name is destroyed. Returns True if successful.

CreateTextFile(filename)

Creates the plain text file specified. Any existing file with the same name is destroyed. Returns True if successful.

DestroyProgressDialog()

Destroys the progress dialog.

EnableNthControl(nth control, enable)

Dynamically enables or disables a given control on a plug-in dialog. Can be called either before a dialog has been displayed (in
which case the operation will apply to the next dialog you show), or while a dialog is already visible (in which case the opera-
tion will affect the top-most currently visible dialog).

Note that controls can only be identified according to their order upon creation. To find out the creation order, open the
appropriate dialog in the plug-in editor, right click on the dialog’s client area and choose Set Creation Order from the con-
textual menu that appears. Note that nth control expects a 0-based number, unlike the display given by Set Creation Order.
By default, all controls will be enabled; to disable any given control, set enable to false.

FileExists(filename)

Returns True if a file exists or False if it doesn’t.

GetDocumentsFolder()

Returns the user’s My Documents (Windows) or Documents (Mac) folder.

GetElapsedCentiSeconds(timer number)

Returns the time since ResetStopWatch was called for the given stop watch, in 100ths of a second.

GetElapsedMilliSeconds(timer number)

Returns the time since ResetStopWatch was called for the given stop watch, in 1000ths of a second.

GetElapsedSeconds(timer number)

Returns the time since ResetStopWatch was called for the given stop watch in seconds.

GetFile(file path)

Returns a new File object representing a file path e.g. file=Sibelius.GetFile("c:\\onion\\foo.txt");

GetFolder(file path)

Returns a new Folder object representing a file path e.g. folder=Sibelius.GetFolder("c:\");

GetNotesForGuitarChord(chord name)

Returns a ManuScript array giving the MIDI pitches and string numbers corresponding to the named guitar chord, using the
most suitable fingering according to the user’s preferences. Strings are numbered starting at 0 for the bottom string and
increasing upwards. The array returned has twice as many entries as the number of notes in the chord, because the pitches
and string numbers are interleaved thus:

array[0] = MIDI pitch for note 0
array[1] = string number for note 0
array[2] = MIDI pitch for note 1
array[3] = string number for note 1
...

GetScoresFolder()

Returns a new Folder object representing the default Scores folder (as defined on the Files page of File > Preferences).

GetSyllabifier()

Returns a new Syllabifier object, providing access to Sibelius’s internal syllabification engine.

Object Reference

94

GetUserApplicationDataFolder()

Returns the user’s Application Data (Windows) or Application Support (Mac) folder.

GoToEnd()

Moves the playback line to the end of the score.

GoToStart()

Moves the playback line to the start of the score.

IsDynamicPartOpen(dynamic part)
Returns True if the specified part and its corresponding Score is valid and is visible in a Score window within Sibelius.

MakeSafeFileName(filename)

Returns a “safe” version of filename. The function removes characters that are illegal on Windows or Unix, and truncates the
name to 31 characters so it will be viewable on Mac OS 9.

MessageBox(string)

Shows a message box with the string and an OK button.

MoveActiveViewToBar(bar number[,position])

Brings a given internal bar number into view. Has the same effect as Go to Bar in Sibelius. An optional position within the bar
may also be specified, but if omitted, the very start of the bar will be brought into view.

MoveActiveViewToSelection([start of selection])
Brings the object(s) currently selected into view. If start of selection is False, the end of the selection will be brought into view.
If the optional argument is True or omitted, the start of the selection will be visible. Has the same effect as Shift + Home/End
in Sibelius.

New([manuscript paper])

Creates and shows a new score. If the optional parameter manuscript paper is not supplied, Sibelius will create a blank score;
manuscript paper should be the filename of the manuscript paper you want to create, minus its .sib file extension. Returns the
score object corresponding to the new score.

NthScore(score index from 0)
Returns the nth open score (zero-based), or null if the specified index is not valid.

Open(filename [,quiet])

Opens and displays the given file. Filename must include its extension, e.g. Song.sib. If the optional boolean parameter quiet
is set to True, then no error messages or dialogs will be displayed, even if the file could not be opened for some reason.
Returns True if the file is opened successfully, False otherwise.

Play()

Plays the current score, from the current position of the playback line.

PlayFromSelection()

Plays from the current selection.

PlayFromStart()

Plays from the start of the score.

Print(number of copies[, dynamic part])
Prints the specified number of copies of the current score or dynamic part using default settings. If number of copies is miss-
ing or a negative number, then the default number of copies for the score or part is printed, and if set to 0 no printing occurs.
The optional dynamic part parameter must be a valid object of the active Score (this does not affect or use
Score.CurrentDynamicPart for the Score printed); if it is not supplied, the active Score is printed instead. Returns
True for success, False for failure.

Sibelius

95

PrintAllDynamicParts([score])
Prints the default number of copies of all dynamic parts, but does not print the full score. Prints the currently-active Score if
the optional score parameter is not passed in. Returns True for success, False for failure.

RandomNumber()

Returns a random number.

RandomSeed(start number)

Restarts the random number sequence from the given number.

RandomSeedTime()

Restarts the random number sequence based on the current time.

RefreshDialog()

Refreshes the data being displayed by any controls on the currently active plug-in dialog. For example, if a text object gets its
string from a global variable and the value stored in this global variable has changed whilst the dialog is visible, calling
RefreshDialog will update the text object on the dialog accordingly. Returns True if successful.

ResetStopWatch(timer number)

Resets the given stop watch.

ReadTextFile(filename,[unicode])

Reads the given filename into an array of strings, one per line. If the unicode parameter is true, the file is treated as Unicode,
otherwise it is treated as ANSI (i.e. 8-bit) text, which is the default. The resulting array can be used in two ways:

lines = Sibelius.ReadTextFile("file.txt");
for each l in lines {

trace(l);
}

or:

lines = Sibelius.ReadTextFile("file.txt");
for i=0 to lines.NumChildren {

trace(lines[i]);
}

SelectFileToOpen(caption,file,initial_dir,default extension,default type,default type description)

Shows a dialog prompting the user to select a file to open. All parameters are optional. The method returns a file object
describing the selection. For example:

file=Sibelius.SelectFileToOpen("Save Score","*.sib","c:\","sib","SIBE","Sibelius
File");

Note that the initial_dir parameter has no effect on Mac, because it is unsupported by Mac OS X.

SelectFileToSave(caption,file,initial_dir,default extension,default type,default type description)

Shows a dialog prompting the user to select a file to save to. All parameters are optional. The method returns a file object
describing the selection. File types and extensions:

Description Type Extension

EMF graphics "EMF" emf

Windows bitmap "BMP" bmp

Macintosh PICT bitmap "PICT" pict

Sibelius score "SIBE" sib

MIDI file "Midi" mid

House style file "SIBS" lib

Object Reference

96

PhotoScore file "SCMS" opt

Web page "TEXT" html

TIFF graphics "TIFF" tif

PNG graphics "PNG" png

Note that the initial_dir parameter has no effect on Mac, because it is unsupported by Mac OS X.

SelectFolder([caption])
Allows the user to select a folder and returns a Folder object. The optional string parameter caption sets the caption of the dia-
log that appears.

ShowDialog(script name,object)

Shows a dialog from a dialog description and sends messages and values to the given object. Returns the value True (1) or
False (0) depending on which button you clicked to close the dialog (typically OK or Cancel).

ShowDynamicPart(dynamic part[, newWindow])
Shows the specified dynamic part. The second optional Boolean parameter overrides the state of the Open parts in new
windows preference. Returns True if the specified part can be shown, False otherwise. Can be used to bring a Score to the
front by way of Sibelius.ShowDynamicPart(Score.CurrentDynamicPart).

Stop()

Stops the current score from playing.

UpdateProgressDialog(progress pos,status message)

Returns 0 if the user clicked Cancel.

YesNoMessageBox(string)

Shows a message box with Yes and No buttons. Returns True if Yes is chosen, else False.

Variables
ActiveScore is the active Score object (read/write). Setting Sibelius.ActiveScore makes active the

current dynamic part (which may be the full score rather than a part) of the score. If that
window is not currently shown, a new window may be created according to the user’s
preferences. Returns null if it fails to make the specified score or part active.

ApplicationLanguage returns the language of the version of Sibelius currently running, always in English – e.g. Eng-
lish, German, French etc. (read only)

CurrentTime returns a string containing the current time in the format hh:mm:ss, based on your own com-
puter’s locale (read only)

CurrentDateShort returns a string containing the current date in the format dd/mm/yyyy, based on your own
computer’s locale (read only)

CurrentDateLong returns a string containing the current date in the format dd MM yyyy, based on your own
computer’s locale (read only)

CurrentDate returns the current date and time as a DateTime object in local time (read only).

HouseStyles the list of house styles available, as a ComponentList

ManuscriptPapers the list of manuscript papers available, as a ComponentList

OSVersionString the current operating system in which the plug-in is running, as one of the following strings:

Windows 95
Windows 98
Windows ME
Windows NT 3.x
Windows NT 4

Sibelius

97

Windows 2000
Windows XP
Windows Vista
Windows 7
Mac OS X
Mac OS X Jaguar
Mac OS X Panther
Mac OS X Tiger
Mac OS X Leopard
Mac OS X Snow Leopard

If the operating system is unrecognized, the variable returns Unknown system version.

PathSeparator returns the current path separator character (i.e. “\” on Windows, “/” on Mac).

Plugins the list of plug-ins installed. See the documentation for the Plugin object

Playing is True if a score is currently being played (read only).

ProgramVersion the current version of Sibelius in which the plug-in is running, as an integer in the following
format:

(major version) * 1000 + (minor version) * 100 + (revision) * 10

So Sibelius 3.1.3 would be returned as 3130.

ScoreCount is the number of scores being edited (read only).

ViewHighlights is True if View > Highlights is switched on (read/write).

ViewNoteVelocities is True if View > Live Playback Velocities is switched on (read/write).

ViewNoteColors the current View > Note Colors setting used (read/write).

Description Value
None 0
Notes out of Range 1
Pitch Spectrum 2
Voice Colors 3

Object Reference

98

SparseArray

For more information about using sparse arrays in ManuScript, see Sparse arrays on page 20.

To create a sparse array, use the built-in method CreateSparseArray(a1,a2,a3,a4...an).

Methods
ValidIndices()

Returns a sparse array containing only the populated indices of the original sparse array, i.e. those that are not null.

Concat(array1, array2 ... arrayN)
Concatenate zero or more sparse arrays to this one, and return it as a one-level deep copy (so if a sparse array contains other
arrays, for example, then the new sparse array will contain references to those arrays, not copies of them). This method does
not modify the original sparse array.

Join([separator])
Returns the array as a string, with each populated element separated by the optional separator. If you don’t specify separator,
the default separator is a comma.

Push(value1, value2, value3 ... valueN)

Pushes one or more values to the end of the array.

Pop()

Returns the last element of the array, and removes it from the array.

Reverse()

Reverses the sparse array in place, modifying the sparse array being operated on. The reversed array only populates the
elements needed to create the reversed array.

Slice(start[,end])

Returns a new sparse array of the elements starting from start and up to, but not including, the optional end. start and end can
be negative indices referring to offsets from the end of the array.

Variables
Length Returns or sets the length of the array (read/write).

Converting old-style arrays to new sparse arrays
The SparseArray object is a replacement for the old Array object, which was a more limited kind of array that could only hold
strings and integers, but no other kind of objects. You are recommended to use the new SparseArray object for all arrays in your
plug-ins, but if you have an existing plug-in in which old-style Arrays are used, you can convert them to SparseArrays as follows:

Array.ConvertToSparseArray() returns a new SparseArray object, populated with strings converted from the old-style
Array.

SpecialBarline

99

SpecialBarline

Derived from a BarObject

These can only be found in system staves.

Methods
None.

Variables
BarlineType The name of the type of special barline, expressed as a string.

BarlineInternalType The type of the barline, expressed as a numeric ID which maps to one of the SpecialBarline
global constants (see Global constants on page 119).

Object Reference

100

Staff

These can be normal staves or the system staff. The system staff contains objects that apply to all staves, such as SpecialBarlines
and text using a system text style.

A Staff contains Bar objects.

for each variable in returns each object in the staff.

for each type variable in returns each item of type type in the staff in chronological order (i.e. in order of rhythmic position
in each bar).

Methods
AddClef(pos,concert pitch clef[,transposed pitch clef])

Adds a clef to the staff at the specified position. concert pitch clef determines the clef style when Notes > Transposing Score is
switched off; the optional transposed pitch clef parameter determines the clef style when this is switched on. Clef styles should
be an identifier like “clef.treble”; for a complete list of available clef styles, see Clef styles on page 122. Alternatively you can
give the name of a clef style, e.g. “Treble,” but bear in mind that this may not work in non-English versions of Sibelius.

AddLine(pos,duration,line style,[dx,[dy,[voicenumber,[hidden]]]])

Adds a line to staff (please see the documentation in Bar object below).

AddNote(pos,sounding pitch,duration,[tied [,voice [,diatonic pitch[,string number]]]])

Adds a note to staff, adding to an existing NoteRest if already at this position (in which case the duration is ignored); other-
wise creates a new NoteRest. Will add a new bar if necessary at the end of the staff. The position is in 1/256th quarters from
the start of the score. The optional tied parameter should be True if you want the note to be tied. Voice 1 is assumed unless
the optional voice parameter (with a value of 1, 2, 3 or 4) is specified. You can also set the diatonic pitch, i.e. the number of the
“note name” to which this note corresponds, 7 per octave (35 = middle C, 36 = D, 37 = E and so on). If a diatonic pitch of zero
is given then a suitable diatonic pitch will be calculated from the MIDI pitch. The optional string number parameter gives a
string number for this note, which is only meaningful if the note is on a tablature stave. If this parameter is not supplied then
a default string number is calculated based on the current tablature stave type and the guitar tab fingering options (specified
on the Note Input page of File > Preferences). Returns the Note object created (to get the NoteRest containing the note, use
Note.ParentNoteRest).

When adding very short notes to tuplets, Sibelius may be unable to find a legal place for the note in the bar. Should this hap-
pen, Sibelius will return null. You should therefore check for a valid object if there is any likelyhood that this situation may
arise in your code.

N.B.: If you add a note to a score that intersects an existing tuplet, Sibelius will try to snap the note to the closest sensible place
within that tuplet. However, you are advised to use Tuplet.AddNote() for this purpose as it is void of any ambiguity.

AddSymbol(pos,symbol index or name)

Adds a symbol to staff (please see the documentation in Bar object below).

CurrentKeySignature(bar number)

Returns a KeySignature valid at the bar number passed.

NthBar(n)

Returns the nth bar in the staff, counting from 1.

SetSound(styleID[,set SoundStage])

Changes the initial playback sound of this staff to be the default sound for the given default instrument styleID. For a complete
list of default instrument style IDs in Sibelius, see Instrument types on page 122. If the optional Boolean parameter is set
to False, then the SoundStage information (volume, pan and distance) for this staff will be unchanged. If it is omitted or set
to True, then the SoundStage information will be set to the default for the new sound.

Staff

101

SetSoundID(soundID)

Changes the initial playback sound of this staff to the given soundID.

Staff[array element]

Returns the nth bar (counting from 1) e.g. Staff[1].

Variables
BankHigh Controls MIDI controller 0, used to select the “coarse” bank number for this stave, and corre-

sponding to the Mixer control of the same name. The range is 0–127, or –1 if you don’t want to
send this controller message at the start of playback. Note that not all MIDI devices support
multiple banks (read/write).

BankLow Controls MIDI controller 32, used to select the “fine” bank number for this stave, and corre-
sponding to the Mixer control of the same name. The range is 0–127, or –1 if you don’t want to
send this controller message at the start of playback. Note that not all MIDI devices support
multiple banks (read/write).

BarCount Number of bars in the staff (read only).

Channel The MIDI channel number of this staff, numbered 1–16 (read/write).

Distance The reverb “distance” of this staff, corresponding to the control of the same name in the Mixer.
This is a percentage, used to scale the overall reverb settings from the Performance dialog
(read/write).

FullInstrumentName Gives the full instrument name of the stave, empty for an unnamed stave (read/write).

NumStavesInSameInstrument The number of staves belonging to the default instrument from which this staff was created
(read only).

InitialClefStyle The name of the initial clef on a staff, depending on the state of Notes > Transposing Score
(read only).

InitialClefStyleId The style identifier of the initial clef on a staff, depending on the state of Notes > Transposing
Score (read only).

InitialInstrumentType Returns an InstrumentType object for the instrument type at the start of the staff.

InitialKeySignature Returns the KeySignature object at the start of this staff (read only).

InitialStyleId Returns the style identifier of the staff (read only). To create an instrument from such an ID,
pass the style as the first argument to Score.CreateInstrument. For a complete list of
all the default instrument names in Sibelius, see Instrument types on page 122.

InstrumentName Gives the full instrument name of the staff in the form that is displayed on the Instruments
and Staves dialog in Sibelius (read only). For an unnamed stave, this will be “[Piano]” for
example, where Piano is the default instrument name of the stave (see below). To get the inter-
nal name (which will be empty for unnamed staves), use the read/write variables
FullInstrumentName or ShortInstrumentName instead.

IsSystemStaff True or False depending on whether this staff is a system staff or not (read only).

IsVocalStaff Returns True if the instrument type used by the staff has the Vocal staff option switched on,
meaning that e.g. the default positions of dynamics should be above the staff rather than below
(read only).

MuteMode Specifies whether or not this stave will play back. Corresponds to the mute button in the Mixer.
The supported values are defined as global constants (see Global constants on page 119)
and are Muted, HalfMuted and NotMuted (read/write).

Object Reference

102

Pan The MIDI stereo panning position of this staff (corresponding to the pan control in the Mixer).
Permissible values are –100 to 100, with positive values being to the right and negative to the
left (read/write).

ParentScore Returns the staff ’s parent Score object (read only).

ShortInstrumentName Gives the short instrument name of the stave, empty for an unnamed stave (read/write).

Solo True or False depending on whether this staff plays back in “solo” mode, corresponding to
the Mixer button of the same name (read/write).

SoundIdOverrideIfAny Returns a string containing the sound ID override set in the mixer for the staff. If no override
has been set, an empty string is returned (read only).

StaffNum Returns the number of this stave, counting from 1 at the top of the currently-viewed part.
Returns 0 for for SystemStaff objects (read only).

Volume The overall MIDI volume of this staff, corresponding to its fader in the Mixer. Permissible val-
ues are 0–127 (read/write).

Syllabifier

103

Syllabifier

Acts as a wrapper around Sibelius’s internal Syllabification engine, exposing its functionality to ManuScript.

Methods
AbbreviateUsingApostrophe(useApostrophe)

When the abbreviate flag is set to True when calling Syllabify, Sibelius will replace vowels that have been combined with the
previous syllable with an apostrophe if this option is switched on – e.g. Vege-ta-bles vs Veg’-ta-bles. Calling this method will
cause the syllabification engine to recalculate its result if necessary.

GetNthSyllable(n)

Once a string has been syllabified by calling the Syllabify method, you can use this method to return each
individual syllable as a string

NthSyllableEndsWord(n)

Once a string has been syllabified by calling the Syllabify method, you can use this method to find out whether each
syllable occurs at the end of a word

Syllabify(textToSyllabify[, language[, abbreviate = False]])

Breaks a string down into its syllabic components, returning the number of syllables in the resultant syllabification, or 0 if an
error has occured. The rules of the specified language will be used, and you may legally supply either a language ID, or the
localized language name. To get the individual syllables, you should call the GetNthSyllable and NthSyllableEnd-
sWord methods documented below.

If the language argument is omited, Sibelius will attempt to automatically identify the language of the text. If this is not pos-
sible, or if an unrecognised language ID or name has been supplied, 0 will be returned.

When abbreviate is True, each ambiguous word in the string will be syllabified using the minimal number of syllables.
For example, syllabifying “Everybody likes vegetables” would return “Eve-ry-bod-y likes vege-ta-bles” with this flag set to
True, otherwise “E-ve-ry-bod-y likes veg-e-ta-bles”.

Variables
AbbreviateUsingApostrophe Returns True/False depending on whether the syllabification engine is set to abbreviate

combined syllables with an apostrophe (read only – call method with same name for write
access)

AvailableLanguageIds Returns an array containing a list of the available syllabification languages as three-letter
non-translatable IDs – e.g. ENG (English), GER (German), LAT (Latin). These IDs are
identical in all localized versions of Sibelius (read only)

AvailableLanguages Returns an array containing a list of the available syllabification languages as localized
strings (read only)

NumberOfSyllables Returns the number of syllables in the hyphenated string generated by calling
the Syllabify method (read only)

SyllabifiedString Returns the resultant hyphenated string generated by calling the Syllabify method
(read only)

Object Reference

104

SymbolItem and SystemSymbolItem

Derived from a BarObject. For system symbols (i.e. symbols belonging to the system staff, retrieved with for each on the sys-
tem staff object), the type of symbol objects is SystemSymbolItem, not SymbolItem.

Methods
None.

Variables
Index The index of this symbol in the list of symbols. This corresponds to its position in the Create >

Symbol dialog, counting from zero left-to-right and top-to-bottom (read only).

Name The name of this symbol. May be translated in non-English language versions of Sibelius (read
only).

Size The draw size of the symbol, corresponding to the four available options in the Symbols dialog
in Sibelius. The four available values are NormalSize, CueSize, GraceNoteSize and
CueGraceNoteSize, all defined as global constants (read/write).

SystemStaff, Staff, Selection, Bar and all BarObject-derived objects

105

SystemStaff, Staff, Selection, Bar and all BarObject-
derived objects

Variables
IsALine Returns true if the object is a line object. (Note that this is a variable, not a method, unlike the

IsObject()method for all objects.)

Type A string giving the name of the type of an object. The strings for the first 4 types above are
"SystemStave", "Stave", "MusicSelectionList", and "Bar". Note that this vari-
able is also a member of all objects that occur in bars.

Object Reference

106

SystemStaff

There is one SystemStaff object per score. The SystemStaff contains objects which apply to all staves, such as SpecialBarlines and
text using a system text style. Unlike normal staves, the SystemStaff does not appear in the score itself. As such, most of the vari-
ables and methods supported for Stave objects are not available on a SystemStaff. Those that are supported by SystemStaff are as
follows.

Methods
CurrentKeySignature(bar number)

Returns a KeySignature valid at the bar number passed.

CurrentTimeSignature(bar number)

Returns a TimeSignature valid at the bar number passed.

NthBar(n)

Returns the nth bar in the staff, counting from 1.

SystemStaff[array element]

Returns the nth bar (counting from 1) e.g. SystemStaff[1].

Variables
BarCount Number of bars in the staff (read only).

InitialKeySignature Returns the KeySignature object at the start of this staff (read only).

IsSystemStaff Returns True for a SystemStaff (read only).

TextItem and SystemTextItem

Derived from a BarObject. For system text (i.e. text belonging to the system staff, retrieved with for each on the system staff
object), the type of text objects is SystemTextItem, not TextItem.

Methods
None.

Variables
StyleAsText The text style name (read/write).

StyleId The identifier of the text style of this piece of text (read/write).

Text The text as a string (read/write).

TextWithFormatting Returns an array containing the various changes of font or style (if any) within the string in
a new element (read only). For example, “This text is \B\bold\b\, and this is
\I\italic\i\” would return an array with eight elements containing the following data:

arr[0] = “This text is “
arr[1] = “\B\”
arr[2] = “bold”
arr[3] = “\b\”
arr[4] = “, and this is “
arr[5] = “\I\”
arr[6] = “italic”
arr[7] = “\i\”

TextWithFormattingAsStringThe text including any changes of font or style (read only).

Object Reference

108

TimeSignature

Derived from a BarObject.

Methods
None

Variables
AllowCautionary Returns True if the time signature is set to show a cautionary at the end of the previous

system, if it occurs at the start of a system (read only).

Denominator The time signature’s bottom number (read only).

Numerator The time signature’s top number (read only).

Text The time signature as text. You can use this to detect common time and alla breve time signa-
tures by comparing it to the global constants CommonTimeString and AllaBreve-
TimeString, which define the Unicode characters used by these symbols. Other time
signatures will be of the form “4\n4” (read only).

TreeNode

109

TreeNode

These are used internally by ManuScript to implement arrays and hashes (returned with the CreateArray and CreateHash
methods), and to represent global data (defined in the plugin editor). Each TreeNode can contain a label, a piece of data and and a
list of “children,” which are also TreeNodes. Normally, any access to a TreeNode object will access the data that is held, so that you
don’t need to know anything about them, but there are also some extra variables and methods that may be useful in some circum-
stances. These can be called on any array, hash or global variable, and on any member of such a structure.

Methods
WriteToString

Returns a string that represents the structure of this TreeNode object. In this representation, the data of a TreeNode is sur-
rounded by double quotes and the label is not. Note that a label need not be defined. Any children of the TreeNode (also
TreeNode objects themselves) are contained within curly braces { and }. To obtain child TreeNodes, use the normal array
operator, as described in the documentation for arrays and hashes.

Variables
Label The label of this TreeNode.

NumChildren The number of child TreeNodes belonging to this TreeNode object.

Object Reference

110

Tuplet

Derived from a BarObject.

Methods
AddNestedTuplet(posInTuplet, left, right, unit[, style[, bracket[,fullDuration]]]])

Nests a new tuplet bracket within an existing tuplet at a position relative to the duration and scale-factor of the existing tuplet.
The left and right parameters specify the ratio of the new tuplet, e.g. 3 (left) in the time of 2 (right). The unit parameter speci-
fies the note value (in 1/256th quarters) on which the tuplet should be based. For example, if you wish to create an eighth note
(quaver) triplet group, you would use the value 128. The optional style and bracket parameters take one of the pre-defined
constants that affect the visual appearance of the created tuplet; see Global constants on page 119. If fullDuration is true,
the bracket of the tuplet will span the entire duration of the tuplet. Returns the Tuplet object created.

NB: If AddNestedTuplet() has been given illegal parameters, it will not be able to create a valid Tuplet object. Therefore,
you should test for inequality of the returned Tuplet object with null before attempting to use it.

AddNote(posInTuplet, pitch, duration[, tied[, diatonic pitch[, string number]]]])

Adds a note to an existing tuplet, adopting the same voice number as used by the tuplet itself. Please note that posInTuplet is
relative to the duration and scale-factor of the tuplet bracket itself. Therefore, if you wanted to add a quarter note/crotchet to
the second beat of a quarter note/crotchet triplet, you would simply use the value 256 – not 341!

utils.SplitTuplet(tuplet,splitpoint)
Split the tuplet object tuplet at the specified splitpoint, which is a number in relation to the tuplet’s parent bar. It then splits a
nest of tuplets at that point in the bar. This method is provided by the utils.plg – see Utils on page 111.

Variables
Bracket The bracket type of the tuplet (e.g. none, auto; see Global constants on page 119).

FullDuration True if the bracket of the tuplet spans its entire duration.

Left The left side of the tuplet, e.g. 3 in 3:2 (read only).

ParentTupletIfAny If the tuplet intersects a tuplet, the innermost Tuplet object at that point in the score is
returned. Otherwise, null is returned (read only).

PlayedDuration The true rhythmic duration of the tuplet e.g. for crotchet triplet this would be the duration of a
minim (read only).

PositionInTuplet Returns the position of the tuplet relative to the duration and scale-factor of its parent tuplet. If
the tuplet does not intersect a tuplet, its position within the parent Bar is returned as usual
(read only).

Right The rightside of the tuplet, e.g. 2 in 3:2 (read only).

Style The style of the tuplet (e.g. number, ratio, ratio + note; see Global constants on page 119).

Text The text shown above the tuplet (read only).

Unit The unit used for the tuplet, e.g. 256 for a triplet of quarter notes (read only).

Utils

111

Utils

Sibelius installs a plug-in called utils.plg that contains a set of useful and common methods that can be called directly by other
plug-ins. It is not intended to be run as a plug-in in its own right, so does not appear in the Plug-ins menu.

The methods available via utils.plg are as follows:

utils.AbsoluteValue(value)
Returns the absolute value of a number, i.e. its numerical value without regard to its sign.

utils.AddFractions(x,y)
Adds two fractions x and y, passed in as ManuScript arrays. Returns an array with the result of the addition.

utils.BinaryString(x)
Returns a binary string (e.g. “101010”) equivalent to the number x.

utils.bwAND(x, y)

Equivalent to the C++ bitwise AND (&) operator. For example, utils.bwAND(129,1) is equal to 1.

utils.bwOR(x, y)

Equivalent to the C++ bitwise inclusive OR (|) operator. For example, utils.bwOR(64,4) is equal to 68.

utils.bwXOR(x, y)

Equivalent to the C++ bitwise exclusive XOR (^) operator. For example, utils.bwXOR(4,6) is equal to 2.

utils.CapableOfDeletion()

Returns True if the object can be deleted using Delete(), which is determined by checking Sibelius’s version number.

utils.CaseInsensitiveComparison(s1, s2)

Returns True if the two strings s1 and s2 match, ignoring case.

utils.CastToBool(x)

Returns the variable x explicitly cast as a Boolean.

utils.CastToInt(x)

Returns the variable x explicitly cast as an integer.

utils.CastToStr(x)

Returns the variable x explicitly cast as a string.

utils.CombineArraysOfBool(arr1, arr2)

Concatenates two arrays containing Boolean values and returns the result.

utils.CombineArraysOfInt(arr1, arr2)

Concatenates two arrays containing integral values and returns the result.

utils.CombineArraysOfString(arr1, arr2)

Concatenates two arrays containing string values and returns the result.

utils.CopyTextFile(source, dest)

Copies an existing text file from one location to another, returning True if successful.

utils.CreateArrayBlanket(value, size)

Returns an array with size elements, each containing a blanket value specified by the first parameter.

utils.DeleteStaff(score, nth staff, retain selection)

Object Reference

112

Deletes an entire staff and its content from a given score, returning True if successful. If retain selection is True, Sibelius will
ensure any item(s) that were selected prior to the staff ’s deletion are still selected.

utils.DenaryValue(x)
Returns a number in base 10 equivalent to binary number x, which must be provided as a string.

utils.DivideFractions(x,y)
Divides fraction x by fraction y, passed in as ManuScript arrays. Returns an array with the result of the division.

utils.ExactFileName(filename)
Returns just the filename portion of a string filename containing both a path and a filename.

utils.Format(str, [val1,val2,val3 ...])

Provides a simple means of replacing human-readable data types in a string. Each successive instance of %s in str is replaced
with the value of the next remaining unused argument. e.g. s = utils.Format("The %s brown %s jumps %s
the lazy %s", "quick", "fox", "over", "dog");

utils.FormatTime(ms)

Formats a time, given in milliseconds, to a human-readable string using the format mm’ss.z (where z is centiseconds).

utils.FractionAsDecimal(x)
Returns the decimal equivalent of the fraction x, which is passed in as an array.

utils.FractionDenominator(x)
Returns the denominator of fraction x, which is passed in as an array.

utils.FractionNumerator(x)
Returns the numerator of fraction x, which is passed in as an array.

utils.GetAppDir()

Returns the path of the Sibelius executable as a string.

utils.GetArrayIndex(arr, value)

Returns the index of value in the array arr, or -1 if it doesn’t exist in the array.

utils.GetBits(x)

Returns an array containing the list of powers of two whose cumulative sum equates to the value of x.

utils.GetGlobalApplicationDataDir()

Returns the path of the system’s global application data area as a string.

utils.GetLocationTime(score, barNum, position)

Returns the precise time (in milliseconds) of a given location in a score. The position should be local to the start of the bar
number you have supplied. Use the utils library to achieve this if your plug-in needs to be backwards compatible with Sibelius
4; otherwise call the Score object’s function with the same name.

utils.GetMillisecondsFromTime(time)
If you pass in a time expressed in milliseconds (e.g. one minute being 60,000), this function returns the milliseconds portion
of the number (in this case 60,000 modulus 1000 = 0).

utils.GetMinutesFromTime(time)
If you pass in a time expressed in milliseconds, this function returns the minutes portion of the number (e.g. if time = 120,262
milliseconds, this function returns 2).

utils.GetObjectTime(score,obj)

Returns the precise time (in milliseconds) that the object obj occurs from the start of a given score, taking into account tempo
changes, performance markings and any other events in the score that have an effect on playback. Use this method to achieve

Utils

113

this if your plug-in needs to be backwards compatible with Sibelius 4; otherwise use the Time property of the BarObject object
whose time you wish to determine.

utils.GetPluginId(plug-in)
This enables you to identify a plug-in by entering the line of code PluginUniqueID = "someUniqueId"; in a plug-in’s
Initialize method. When you pass a plug-in object to this function, it scans the plug-in’s code and returns its unique ID if
it has one, otherwise an empty string.

utils.GetSibeliusPluginsFolder()

This is a wrapper around the deprecated GetPluginsFolder() function, and returns the path of the Plugins folder.

utils.GetSibMajorVersion()

Returns the major version number of Sibelius.

utils.GreatestCommonDivisor(m,n)
Returns the greatest common divisor of two non-zero integers, i.e. the largest positive integer that divides both numbers with-
out remainder.

utils.IsInArray(arr, value)

Returns True if value exists in the array arr.

utils.IsNumeric(str)

Returns True if the string is numeric.

utils.LowerCase(str)

Returns the ANSI string str in lowercase.

utils.MakeFraction(x,y)
Creates a fraction with x as the numerator and y as the denominator. The fraction is returned as a normal ManuScript array.
(Manipulating fractions means you never have to worry about rounding errors.)

utils.max(x, y)

Returns the greater of two numbers.

utils.min(x, y)

Returns the lesser of two numbers.

utils.MultiplyFractions(x,y)
Multiplies fraction y by fraction x, passed in as ManuScript arrays. Returns an array with the result of the multiplication.

utils.PatternCount(pattern,str)

Returns the number of times the substring pattern exists in str.

utils.Pos(subStr,str)

Returns the zero-based position of the first instance of the sub-string subStr in str, or -1 if it isn’t found.

utils.PosReverse(subStr,str)
Returns the zero-based position of the last instance of the sub-string subStr in str, or -1 if it isn’t found.

utils.Power(x,y)
Raises x to the yth power, where y is a positive integer.

utils.Replace(inStr,toFind,replaceWith,replaceAll)
Replaces a sub-string in a string with a new value. It looks for toFind in the string inStr, and if it finds it, replaces it with
replaceWith. If the Boolean replaceAll is False, it only changes the first instance found; if it’s True, it replaces all instances.

utils.ReverseArrayOfBool(arr)

Reverses the order of the elements in an array of Booleans.

Object Reference

114

utils.ReverseArrayOfInt(arr)

Reverses the order of the elements in an array of integers.

utils.ReverseArrayOfString(arr)

Reverses the order of the elements in an array of strings.

utils.SetDefaultIfNotInArray(value, arr, DefaultIndex)

Scans the array arr for the value specified by the first parameter. Value is returned if it exists in the array, otherwise,
arr[DefaultIndex].

utils.shl(x, y)

Bitwise left-shift. Shifts the value x left by y bits. Equivalent to C++ << operator.

utils.shr(x, y)

Bitwise right-shift. Shifts the value x right by y bits. Equivalent to C++ >> operator.

utils.SortArray(arr)

Sorts the array arr using a case-insensitive alphabetic sort.

utils.SortArrayCustom(arr,method)

Sorts the array arr using a custom sort order routine, which must be passed into this method.

utils.SortArrayNumeric(arr)

Sorts the array arr in ascending numeric order.

utils.SplitTuplet(tuplet,splitpoint)
Split the tuplet object tuplet at the specified splitpoint, which is a number in relation to the tuplet’s parent bar. It then splits a
nest of tuplets at that point in the bar.

utils.StartComponentManager(componentName,callbackFunc)

Returns an array of filenames (strings) found on the system inside a folder with a given name, following the same rules of pre-
cedence as Sibelius’s internal component manager. Files in the user’s application data area take priority over those in the global
application data area, followed lastly by those in the Sibelius’s application directory itself.

callbackFunc should point to a function in the calling script that scans a supplied directory for files with a specific extension.
Such a function might look something like this:

GetFooFiles(dir) { // This is the function signature
 components = CreateArray();
 for each FOO file in dir {
 components[components.NumChildren] = file.NameWithExt;
 }
 return(components);
}

In the scenario above, the call to start the component manager would look like this (where “Foo Files” is the name of the direc-
tory containing your files):

files = utils.StartComponentManager("Foo Files","myPlugin.GetFooFiles");

utils.SubtractFractions(x,y)
Subtracts fraction y from fraction x, passed in as ManuScript arrays. Returns an array with the result of the subtraction.

utils.UpperCase(str)

Returns the ANSI string str in uppercase.

VersionHistory

115

VersionHistory

Each Score object has a VersionHistory object (obtained by way of the score.GetVersions() method), which in turn provides
a list of Version objects. Each Version object represents a specific version, and also provides a list of VersionComment objects,
which represent the per-version comments (as opposed to bar-attached comments, which are represented to ManuScript as Com-
ment objects, derived from BarObject objects).

Methods
AddVersion([name[,comment]])

Adds a new version object and returns it if successful (or null if not), with an optional name and comment for the version.

DeleteNthVersion(n)

Deletes the nth Version object, returning True if successful.

GetNthVersion(n)

Returns the nth Version object.

Variables
NumChildren Returns the number of versions in the score’s VersionHistory object.

Object Reference

116

Version

Accessed via a Score object’s VersionHistory object.

Methods
Close()

Closes all views of the version that are currently open in Sibelius, returning True if it has actually closed anything.

DeleteNthComment(n)

Deletes the nth comment, returning True if successful.

OpenAndReturnScore()

Opens the specified version in Sibelius (if it’s not already open) and returns its Score object.

Variables
EndDate Returns a DateTime object representing the version’s end date (read only).

IsOpen Returns True if the version is currently open in Sibelius (read only).

Name Returns the name of the version (read/write).

NumComments Returns the number of comments in the version (read only).

StartDate Returns a DateTime object representing the version’s start date (read only).

VersionComment

117

VersionComment

Accessed via Version objects.

Methods
None.

Variables
Text Returns or changes the text of the comment, and this cannot be undone (read/write).

TimeStamp Returns a DateTime object representing the time at which the comment was created.

UserName Returns the name of the user who created the comment (read only).

Object Reference

118

VersionComment

119

Global constants

Global constants

120

Global constants

These are useful variables held internally within ManuScript and are accessible from any plug-in. They are called “constants”
because you are encouraged not to change them.

Many of the constants are the names of note values, which you can use to specify a position in a bar easily. So instead of writing
320 you can write Quarter+Sixteenth or equally Crotchet+Semiquaver.

Truth values

Measurements

Positions and durations

Style names
For the ApplyStyle() method of Score objects. Instead of the capitalized strings in quotes, you can use the equivalent vari-
ables in mixed upper and lower case. Note again that the constant HOUSE refers to the options in House Style > Engraving Rules
and Layout > Document Setup only; to apply the entire House Style, use the ALLSTYLES constant.

Bar number formats
These constants can be used for the format argument of the AddBarNumber method.

True 1

False 0

Space 32

StaffHeight 128

Long 4096 Sixteenth 64

Breve 2048 Semiquaver 64

DottedBreve 3072 DottedSixteenth 96

Whole 1024 DottedSemiquaver 96

Semibreve 1024 ThirtySecond 32

DottedWhole 1536 Demisemiquaver 32

Half 512 DottedThirtySecond 48

Minim 512 DottedDemisemiquaver 48

DottedHalf 768 SixtyFourth 16

DottedMinim 768 Hemidemisemiquaver 16

Quarter 256 DottedSixtyFourth 24

Crotchet 256 DottedHemidemisemiquaver 24

DottedQuarter 384 OneHundredTwentyEighth 8

DottedCrotchet 384 Semihemidemisemiquaver 8

Eighth 128 DottedOneHundredTwentyEighth 12

Quaver 128 DottedSemihemidemisemiquaver 12

DottedEighth 192

DottedQuaver 192

House "HOUSE" Dictionary "DICTIONARY"

Text "TEXT" SpacingRule "SPACINGRULE"

Symbols "SYMBOLS" CustomChordNames "CUSTOMCHORDNAMES"

Lines "LINES" DefaultPartAppearance "DEFAULTPARTAPPEARANCE"

Noteheads "NOTEHEADS" InstrumentsAndEnsembles "INSTRUMENTSANDENSEMBLES"

Clefs "CLEFS" AllStyles "ALLSTYLES"

BarNumberFormatNormal 0

Global constants

121

Line styles

Text styles
Here is a list of all the text style identifiers which are guaranteed to be present in any score in Sibelius. In previous versions of
ManuScript text styles were identified by a numeric index; this usage has been deprecated but will continue to work for old plug-
ins. New plug-ins should use the identifiers given below. For each style we first give the English name of the style and then the
identifier.

BarNumberFormatNumberLetterLower 1

BarNumberFormatNumberLetterUpper 2

Highlight "line.highlight" Repeat ending (closed) "line.system.repeat.closed"

Arpeggio "line.staff.arpeggio" Repeat ending (open) "line.system.repeat.open"

Arpeggio down "line.staff.arpeggio.down" Accel. "line.system.tempo.accel"

Arpeggio up "line.staff.arpeggio.up" Accel. (italic) "line.system.tempo.accel.italic"

Unused 2 "line.staff.arrow" Accel. (italic, text only) "line.system.tempo.accel.italic.

Beam "line.staff.bend" Molto accel. "line.system.tempo.accel.molto"

Box "line.staff.box" Molto accel. (text only) "line.system.tempo.accel.molto.t

Glissando (straight) "line.staff.gliss.straight" Poco accel. "line.system.tempo.accel.poco"

Glissando (wavy) "line.staff.gliss.wavy" Poco accel. (text only) "line.system.tempo.accel.poco.textonly”

Crescendo "line.staff.hairpin.crescendo" Accel. (text only) "line.system.tempo.accel.textonly”

Diminuendo "line.staff.hairpin.diminuendo" Tempo change (arrow right) "line.system.tempo.arrowright"

2 octaves down "line.staff.octava.minus15" Rall. "line.system.tempo.rall"

Octave down "line.staff.octava.minus8" Rall. (italic) "line.system.tempo.rall.italic"

2 octaves up "line.staff.octava.plus15" Rall. (italic, text only) "line.system.tempo.rall.italic.textonly”

Octave up "line.staff.octava.plus8" Molto rall. "line.system.tempo.rall.molto"

Pedal "line.staff.pedal" Molto rall. (text only) "line.system.tempo.rall.molto.textonly”

Line "line.staff.plain" Poco rall. "line.system.tempo.rall.poco"

Slur below "line.staff.slur.down" Poco rall. (text only) "line.system.tempo.rall.poco.textonly”

Slur above "line.staff.slur.up" Rall. (text only) "line.system.tempo.rall.textonly”

Tie "line.staff.tie" Rit. "line.system.tempo.rit"

Trill "line.staff.trill" Rit. (italic) "line.system.tempo.rit.italic"

Dashed system line "line.system.dashed" Rit. (italic, text only) "line.system.tempo.rit.italic.textonly”

Wide dashed system line "line.system.dashed.wide" Molto rit. "line.system.tempo.rit.molto"

1st ending "line.system.repeat.1st" Molto rit. (text only) "line.system.tempo.rit.molto.textonly”

1st and 2nd ending "line.system.repeat.1st_n_2nd" Poco rit. "line.system.tempo.rit.poco"

2nd ending "line.system.repeat.2nd" Poco rit. (text only) "line.system.tempo.rit.poco.textonly”

2nd ending (closed) "line.system.repeat.2nd.closed" Rit. (text only) "line.system.tempo.rit.textonly"

3rd ending "line.system.repeat.3rd"

Instrument names "text.instrumentname" Time signatures (one staff only) "text.staff.timesig.onestaffonly"

1st and 2nd endings "text.staff.1st_n_2nd_endings" Tuplets "text.staff.tuplets"

Auto page break warnings "text.staff.autopagebreak.warnings" Bar numbers "text.system.barnumber"

Boxed text "text.staff.boxed" Metronome mark "text.system.metronome"

Expression "text.staff.expression" Multirests (numbers) "text.system.multirestnumbers"

Chord diagram fingering "text.staff.fingering.chord_diagrams" Composer "text.system.page_aligned.composer"

Footnote "text.staff.footnote" Composer (on title page) "text.system.page_aligned.composer.ontitlepage"

Block lyrics "text.staff.lyrics.block" Copyright "text.system.page_aligned.copyright"

Multirests (tacet) "text.staff.multirests.tacet" Dedication "text.system.page_aligned.dedication"

Plain text "text.staff.plain" Footer (inside edge) "text.system.page_aligned.footer.inside"

Small text "text.staff.small" Footer (outside edge) "text.system.page_aligned.footer.outside"

Chord symbol "text.staff.space.chordsymbol" Worksheet footer (first page, l) "text.system.page_aligned.footer.worksheet.left"

Global constants

122

Clef styles
Here is a list of all the clef style identifiers that are guaranteed to be present in any score in Sibelius, for use with the
Stave.AddClef method. For each style we first give the English name of the style, and then the identifier.

Instrument types
Here is a list of all the instrument type identifiers that are guaranteed to be present in any score in Sibelius. For each style we first
give the English name of the style and then the identifier. Note that only the tablature stave types can be used with guitar frames;
the rest are included for completeness.

Figured bass "text.staff.space.figuredbass" Header "text.system.page_aligned.header"

Fingering "text.staff.space.fingering" Worksheet header (first page, l) "text.system.page_aligned.header.worksheet.left"

Chord diagram fret "text.staff.space.fretnumbers" Worksheet header (first page, r) "text.system.page_aligned.header.worksheet.right"

Lyrics above staff "text.staff.space.hypen.lyrics.above" Header (after first page) "text.system.page_aligned.header_notp1"

Lyrics (chorus) "text.staff.space.hypen.lyrics.chorus" Header (after first page, inside edge) "text.system.page_aligned.header_notp1.inside"

Lyrics line 1 "text.staff.space.hypen.lyrics.verse1" Instrument name at top left "text.system.page_aligned.instrnametopleft"

Lyrics line 2 "text.staff.space.hypen.lyrics.verse2" Lyricist "text.system.page_aligned.lyricist"

Lyrics line 3 "text.staff.space.hypen.lyrics.verse3" Page numbers "text.system.page_aligned.pagenumber"

Lyrics line 4 "text.staff.space.hypen.lyrics.verse4" Subtitle "text.system.page_aligned.subtitle"

Lyrics line 5 "text.staff.space.hypen.lyrics.verse5" Title "text.system.page_aligned.title"

Nashville chord numbers "text.staff.space.nashvillechords" Title (on title page) "text.system.page_aligned.title.ontitlepage"

Common symbols "text.staff.symbol.common" Rehearsal mark "text.system.rehearsalmarks"

Figured bass (extras) "text.staff.symbol.figured.bass.extras" Repeat (D.C./D.S./To Coda) "text.system.repeat"

Note tails "text.staff.symbol.noteflags" Tempo "text.system.tempo"

Special noteheads etc. "text.staff.symbol.noteheads.special" Timecode "text.system.timecode"

Percussion instruments "text.staff.symbol.percussion" Duration at end of score "text.system.timecode.duration"

Special symbols "text.staff.symbol.special" Hit points "text.system.timecode.hitpoints"

Tablature letters "text.staff.tab.letters" Time signatures (huge) "text.system.timesig.huge"

Tablature numbers "text.staff.tab.numbers" Time signatures (large) "text.system.timesig.large"

Technique "text.staff.technique" Time signatures "text.system.timesig.normal"

Alto "clef.alto" Small tab "clef.tab.small"

Baritone C "clef.baritone.c" Small tab (taller) "clef.tab.small.taller"

Baritone F "clef.baritone.f " Tab (taller) "clef.tab.taller"

Bass "clef.bass" Tenor "clef.tenor"

Bass down 8 "clef.bass.down.8" Tenor down 8 "clef.tenor.down.8"

Bass up 15 “clef.bass.up.15" Treble "clef.treble"

Bass up 8 "clef.bass.up.8" Treble down 8 "clef.treble.down.8"

Null "clef.null" Treble (down 8) "clef.treble.down.8.bracketed"

Percussion "clef.percussion" Treble down 8 (old) "clef.treble.down.8.old"

Percussion 2 "clef.percussion_2" Treble up 15 "clef.treble.up.15"

Soprano "clef.soprano" Treble up 8 "clef.treble.up.8"

Mezzo-soprano "clef.soprano.mezzo" French violin "clef.violin.french"

Tab "clef.tab"

Alp-Horn in F instrument.brass.alp-horn.f

Alp-Horn in G instrument.brass.alp-horn.g

Baritone Bugle in G instrument.brass.bugle.baritone.g

Contrabass Bugle in G instrument.brass.bugle.contrabass.g

Euphonium Bugle in G instrument.brass.bugle.euphonium.g

Mellophone Bugle in G instrument.brass.bugle.mellophone.g

Soprano Bugle in G instrument.brass.bugle.soprano.g

Cimbasso in Bb instrument.brass.cimbasso.bflat

Global constants

123

Cimbasso in Eb instrument.brass.cimbasso.eflat

Cimbasso in F instrument.brass.cimbasso.f

Cornet in A instrument.brass.cornet.a

Cornet in Bb instrument.brass.cornet.bflat

Soprano Cornet in Eb instrument.brass.cornet.soprano.eflat

Euphonium in Bb [treble clef] instrument.brass.euphonium

Euphonium in Bb [bass clef, treble transp.] instrument.brass.euphonium.bassclef

Euphonium in C [bass clef] instrument.brass.euphonium.bassclef.bassclef

Euphonium in Bb [bass clef] instrument.brass.euphonium.bflat.bassclef.bassclef

Flugelhorn instrument.brass.flugelhorn

Horn in A [no key] instrument.brass.horn.a.nokeysig

Horn in Ab alto [no key] instrument.brass.horn.alto.aflat.nokeysig

Alto Horn in Eb instrument.brass.horn.alto.eflat

Alto Horn in F instrument.brass.horn.alto.f

Horn in B [no key] instrument.brass.horn.b.nokeysig

Baritone in Bb [treble clef] instrument.brass.horn.baritone

Baritone in C [treble clef] instrument.brass.horn.baritone.2

Baritone in Bb [bass clef, treble transp.] instrument.brass.horn.baritone.bassclef

Baritone in C [bass clef] instrument.brass.horn.baritone.bassclef.bassclef

Bass in Bb instrument.brass.horn.bass.bflat

Bass in Bb [bass clef, treble transp.] instrument.brass.horn.bass.bflat.bassclef

Bass in C instrument.brass.horn.bass.c

Bass in Eb instrument.brass.horn.bass.eflat

Bass in Eb [bass clef, treble transp.] instrument.brass.horn.bass.eflat.bassclef

A Basso Horn [no key] instrument.brass.horn.basso.a.nokeysig

Bb Basso Horn [no key] instrument.brass.horn.basso.bflat.nokeysig

C Basso Horn [no key] instrument.brass.horn.basso.c.nokeysig

Horn in Bb [no key] instrument.brass.horn.bflat.nokeysig

Horn in C [no key] instrument.brass.horn.c.nokeysig

Horn in D [no key] instrument.brass.horn.d.nokeysig

Horn in Db [no key] instrument.brass.horn.dflat.nokeysig

Horn in E [no key] instrument.brass.horn.e.nokeysig

Horn in Eb instrument.brass.horn.eflat

Horn in Eb [no key] instrument.brass.horn.eflat.nokeysig

Horn in F instrument.brass.horn.f

Horn in F [bass clef] instrument.brass.horn.f.bassclef

Horn in F [no key] instrument.brass.horn.f.nokeysig

Horn in F# [no key] instrument.brass.horn.fsharp.nokeysig

Horn in G [no key] instrument.brass.horn.g.nokeysig

Tenor Horn instrument.brass.horn.tenor

Mellophone in Eb instrument.brass.mellophone.eflat

Mellophone in F instrument.brass.mellophone.f

Mellophonium in Eb instrument.brass.mellophonium.eflat

Mellophonium in F instrument.brass.mellophonium.f

Ophicleide instrument.brass.ophicleide

Brass instrument.brass.section

Serpent instrument.brass.serpent

Sousaphone in Bb instrument.brass.sousaphone.bflat

Sousaphone in Eb instrument.brass.sousaphone.eflat

Trombone instrument.brass.trombone

Global constants

124

Alto Trombone instrument.brass.trombone.alto

Bass Trombone instrument.brass.trombone.bass

Trombone in Bb [bass clef, treble transp.] instrument.brass.trombone.bassclef.trebleclef

Contrabass Trombone instrument.brass.trombone.contrabass

Tenor Trombone instrument.brass.trombone.tenor

Trombone in Bb [treble clef] instrument.brass.trombone.trebleclef

Trumpet in A instrument.brass.trumpet.a

Trumpet in B [no key] instrument.brass.trumpet.b.nokeysig

Bass Trumpet in Bb instrument.brass.trumpet.bass.bflat

Bass Trumpet in Eb instrument.brass.trumpet.bass.eflat

Trumpet in Bb instrument.brass.trumpet.bflat

Trumpet in Bb [no key] instrument.brass.trumpet.bflat.nokeysig

Trumpet in C instrument.brass.trumpet.c

Trumpet in D instrument.brass.trumpet.d

Trumpet in Db instrument.brass.trumpet.dflat

Trumpet in E [no key] instrument.brass.trumpet.e.nokeysig

Trumpet in Eb instrument.brass.trumpet.eflat

Trumpet in F instrument.brass.trumpet.f

Trumpet in G [no key] instrument.brass.trumpet.g.nokeysig

Piccolo Trumpet in A instrument.brass.trumpet.piccolo.a

Piccolo Trumpet in Bb instrument.brass.trumpet.piccolo.bflat

Tenor Trumpet in Eb instrument.brass.trumpet.tenor.eflat

Tuba instrument.brass.tuba

Tuba in F instrument.brass.tuba.f

Tenor Tuba (Wagner, in Bb) instrument.brass.tuba.tenor

Tenor Tuba [bass clef] instrument.brass.tuba.tenor.bassclef

Wagner Tuba in Bb instrument.brass.tuba.wagner.bflat

Wagner Tuba in F instrument.brass.tuba.wagner.f

Applause instrument.exotic.applause

Birdsong instrument.exotic.birdsong

Helicopter instrument.exotic.helicopter

Ondes Martenot instrument.exotic.ondes-martenot

Sampler instrument.exotic.sampler

Seashore instrument.exotic.seashore

Tape instrument.exotic.tape

Telephone instrument.exotic.telephone

Theremin instrument.exotic.theremin

Bajo [notation] instrument.fretted.bajo.5lines

Bajo, 6-string [tab] instrument.fretted.bajo.tab

Bajo, 4-string [tab] instrument.fretted.bajo.tab.4lines

Bajo, 5-string [tab] instrument.fretted.bajo.tab.5lines

Alto Balalaika [notation] instrument.fretted.balalaika.alto.5lines

Alto Balalaika [tab] instrument.fretted.balalaika.alto.tab

Bass Balalaika [notation] instrument.fretted.balalaika.bass.5lines

Bass Balalaika [tab] instrument.fretted.balalaika.bass.tab

Contrabass Balalaika [notation] instrument.fretted.balalaika.contrabass.5lines

Contrabass Balalaika [tab] instrument.fretted.balalaika.contrabass.tab

Prima Balalaika [notation] instrument.fretted.balalaika.prima.5lines

Prima Balalaika [tab] instrument.fretted.balalaika.prima.tab

Second Balalaika [notation] instrument.fretted.balalaika.second.5lines

Global constants

125

Second Balalaika [tab] instrument.fretted.balalaika.second.tab

Bandola [notation] instrument.fretted.bandola.5lines

Bandola [tab] instrument.fretted.bandola.tab

Bandolón [notation] instrument.fretted.bandolon.5lines

Bandolón [tab] instrument.fretted.bandolon.tab

Bandurria [notation] instrument.fretted.bandurria.5lines

Bandurria [tab] instrument.fretted.bandurria.tab

Banjo [notation] instrument.fretted.banjo.5lines

Banjo (aDADE tuning) [tab] instrument.fretted.banjo.aDADE.tab

Banjo (aEADE tuning) [tab] instrument.fretted.banjo.aEADE.tab

Banjo (gCGBD tuning) [tab] instrument.fretted.banjo.gCGBD.tab

Banjo (gCGCD tuning) [tab] instrument.fretted.banjo.gCGCD.tab

Banjo (gDF#AD tuning) [tab] instrument.fretted.banjo.gDFAD.tab

Banjo (gDGBD tuning) [tab] instrument.fretted.banjo.gDGBD.tab

Banjo (gDGCD tuning) [tab] instrument.fretted.banjo.gDGCD.tab

Tenor Banjo [notation] instrument.fretted.banjo.tenor.5lines

Tenor Banjo [tab] instrument.fretted.banjo.tenor.tab

Bordonúa [notation] instrument.fretted.bordonua.5lines

Bordonúa [tab] instrument.fretted.bordonua.tab

Cavaquinho [notation] instrument.fretted.cavaquinho.5lines

Cavaquinho [tab] instrument.fretted.cavaquinho.tab

Charango [notation] instrument.fretted.charango.5lines

Charango [tab] instrument.fretted.charango.tab

Cuatro [notation] instrument.fretted.cuatro.5lines

Cuatro, Puerto Rico [tab] instrument.fretted.cuatro.puerto-rico.tab

Cuatro, Venezuela [tab] instrument.fretted.cuatro.venezuela.tab

Resonator guitar [notation] instrument.fretted.guitar.resonator.5lines

Resonator Guitar, A6 tuning [tab] instrument.fretted.guitar.resonator.a6.tab

Resonator Guitar, B11 tuning [tab] instrument.fretted.guitar.resonator.b11.tab

Resonator Guitar, C#m tuning [tab] instrument.fretted.guitar.resonator.c#m.tab

Resonator Guitar, C6+A7 tuning [tab] instrument.fretted.guitar.resonator.c6-a7.tab

Resonator Guitar, C6 + high G tuning [tab] instrument.fretted.guitar.resonator.c6-highg.tab

Resonator Guitar, standard tuning [tab] instrument.fretted.guitar.resonator.c6.tab

Resonator Guitar, C#m7 tuning [tab] instrument.fretted.guitar.resonator.cm7.tab

Resonator Guitar, E13 Hawaiian tuning [tab] instrument.fretted.guitar.resonator.e13-hawaiian.tab

Resonator Guitar, E13 Western tuning [tab] instrument.fretted.guitar.resonator.e13-western.tab

Resonator Guitar, open A tuning [tab] instrument.fretted.guitar.resonator.open.A.tab

Resonator Guitar, open G tuning [tab] instrument.fretted.guitar.resonator.open.G.tab

Dulcimer instrument.fretted.dulcimer

Dulcimer [notation] instrument.fretted.dulcimer.5lines

Dulcimer (DAA tuning) [tab] instrument.fretted.dulcimer.daa.tab

Dulcimer (DAD tuning) [tab] instrument.fretted.dulcimer.dad.tab

Gamba [notation] instrument.fretted.gamba.5lines

Gamba [tab] instrument.fretted.gamba.tab

12-string Acoustic Guitar [notation] instrument.fretted.guitar.12-string.5lines

12-string Acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.12-string.dadgad.tab

12-string Acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.12-string.double-d.tab

12-string Acoustic Guitar, dropped D tuning [tab] instrument.fretted.guitar.12-string.dropped-d.tab

12-string Acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.12-string.open-d.tab

12-string Acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.12-string.open-e.tab

Global constants

126

12-string Acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.12-string.open-g.tab

12-string Acoustic Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.12-string.tab

12-string Acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.12-string.tab.rhythms

Acoustic Guitar [notation] instrument.fretted.guitar.acoustic.5lines

Acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.acoustic.dadgad.tab

Acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.acoustic.double-d.tab

Acoustic Guitar, dropped D tuning [tab] instrument.fretted.guitar.acoustic.dropped-d.tab

Acoustic Guitar, modal D tuning [tab] instrument.fretted.guitar.acoustic.modal-d.tab

Acoustic Guitar, Nashville tuning [tab] instrument.fretted.guitar.acoustic.nashville.tab

Acoustic Guitar, open A tuning [tab] instrument.fretted.guitar.acoustic.open-a.tab

Acoustic Guitar, open C tuning [tab] instrument.fretted.guitar.acoustic.open-c.tab

Acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.acoustic.open-d.tab

Acoustic Guitar, open Dm cross-note tuning [tab] instrument.fretted.guitar.acoustic.open-dm.tab

Acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.acoustic.open-e.tab

Acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.acoustic.open-g.tab

Acoustic Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.acoustic.tab

Acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.acoustic.tab.rhythms

4-string Bass Guitar [notation] instrument.fretted.guitar.bass.4-string.5lines

4-string Bass Guitar [tab] instrument.fretted.guitar.bass.4-string.tab

5-string Bass Guitar [notation] instrument.fretted.guitar.bass.5-string.5lines

5-string Bass Guitar [tab] instrument.fretted.guitar.bass.5-string.tab

Bass Guitar [notation] instrument.fretted.guitar.bass.5lines

6-string Bass Guitar [notation] instrument.fretted.guitar.bass.6-string.5lines

6-string Bass Guitar [tab] instrument.fretted.guitar.bass.6-string.tab

Acoustic Bass [notation] instrument.fretted.guitar.bass.acoustic.5lines

Acoustic Bass [tab] instrument.fretted.guitar.bass.acoustic.tab

5-string Electric Bass [notation] instrument.fretted.guitar.bass.electric.5-string.5lines

5-string Electric Bass [tab] instrument.fretted.guitar.bass.electric.5-string.tab

Electric Bass [notation] instrument.fretted.guitar.bass.electric.5lines

6-string Electric Bass [notation] instrument.fretted.guitar.bass.electric.6-string.5lines

6-string Electric Bass [tab] instrument.fretted.guitar.bass.electric.6-string.tab

5-string Fretless Electric Bass instrument.fretted.guitar.bass.electric.fretless.5-string.5lines

5-string Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.5-string.tab

Fretless Electric Bass [notation] instrument.fretted.guitar.bass.electric.fretless.5lines

6-string Fretless Electric Bass instrument.fretted.guitar.bass.electric.fretless.6-string.5lines

6-string Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.6-string.tab

Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.tab

Electric Bass [tab] instrument.fretted.guitar.bass.electric.tab

5-string Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.5-string.5lines

5-string Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.5-string.tab

Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.5lines

6-string Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.6-string.5lines

6-string Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.6-string.tab

Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.tab

Semi-Acoustic Bass [notation] instrument.fretted.guitar.bass.semi-acoustic.5lines

Semi-Acoustic Bass [tab] instrument.fretted.guitar.bass.semi-acoustic.tab

Bass Guitar [tab] instrument.fretted.guitar.bass.tab

Bass Guitar [tab, with rhythms] instrument.fretted.guitar.bass.tab.rhythms

Classical Guitar [notation] instrument.fretted.guitar.classical.5lines

Classical Guitar, DADGAD tuning [tab] instrument.fretted.guitar.classical.dadgad.tab

Global constants

127

Classical Guitar, double D tuning [tab] instrument.fretted.guitar.classical.double-d.tab

Classical Guitar, dropped D tuning [tab] instrument.fretted.guitar.classical.dropped-d.tab

Classical Guitar, open D tuning [tab] instrument.fretted.guitar.classical.open-d.tab

Classical Guitar, open E tuning [tab] instrument.fretted.guitar.classical.open-e.tab

Classical Guitar, open G tuning [tab] instrument.fretted.guitar.classical.open-g.tab

Classical Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.classical.tab

Classical Guitar, standard tuning [tab] instrument.fretted.guitar.classical.tab.rhythms

Electric Guitar [notation] instrument.fretted.guitar.electric.5lines

7-string Electric Guitar, low A tuning [tab] instrument.fretted.guitar.electric.7-string.low-a.tab

7-string Electric Guitar, low B tuning [tab] instrument.fretted.guitar.electric.7-string.tab

Electric Guitar, DADGAD tuning [tab] instrument.fretted.guitar.electric.dadgad.tab

Electric Guitar, double D tuning [tab] instrument.fretted.guitar.electric.double-d.tab

Electric Guitar, dropped D tuning [tab] instrument.fretted.guitar.electric.dropped-d.tab

Electric Guitar, open D tuning [tab] instrument.fretted.guitar.electric.open-d.tab

Electric Guitar, open E tuning [tab] instrument.fretted.guitar.electric.open-e.tab

Electric Guitar, open G tuning [tab] instrument.fretted.guitar.electric.open-g.tab

Electric Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.electric.tab

Electric Guitar, standard tuning [tab] instrument.fretted.guitar.electric.tab.rhythms

Kora instrument.fretted.guitar.kora

Semi-acoustic Guitar [notation] instrument.fretted.guitar.semi-acoustic.5lines

Semi-acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.semi-acoustic.dadgad.tab

Semi-acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.semi-acoustic.double-d.tab

Semi-acoustic Guitar, dropped D tuning [tab] instrument.fretted.guitar.semi-acoustic.dropped-d.tab

Semi-acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.semi-acoustic.open-d.tab

Semi-acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.semi-acoustic.open-e.tab

Semi-acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.semi-acoustic.open-g.tab

Semi-acoustic Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.semi-acoustic.tab

Semi-acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.semi-acoustic.tab.rhythms

10-string Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.10-string.tab

Hawaiian Steel Guitar [notation] instrument.fretted.guitar.steel.hawaiian.5lines

6-string Hawaiian Steel Guitar, standard tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab

6-string Hawaiian Steel Guitar, alternate tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.alternative

6-string Hawaiian Steel Guitar, slack key Bb Mauna Loa tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.bflat.mauna.loa

6-string Hawaiian Steel Guitar, slack key C Mauna Loa tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.c.mauna.loa

6-string Hawaiian Steel Guitar, slack key Wahine CGDGBD tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.cgdgbd.wahine

6-string Hawaiian Steel Guitar, slack key Wahine CGDGBE tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.cgdgbe.wahine

6-string Hawaiian Steel Guitar, slack key Wahine DGDF#BD tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.dgdfbd.wahine

6-string Hawaiian Steel Guitar, slack key G Mauna Loa tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.g.mauna.loa

6-string Hawaiian Steel Guitar, slack key G Taro Patch tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.g.taro.patch

6-string Hawaiian Steel Guitar, slack key Wahine GCDGBE tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.gcdgbe.wahine

8-string Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.8-string.tab

8-string Hawaiian Steel Guitar, alternate tuning [tab] instrument.fretted.guitar.steel.hawaiian.8-string.tab.alternative

Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.tab

Pedal Steel Guitar [notation] instrument.fretted.guitar.steel.pedal.5lines

Pedal Steel Guitar [tab] instrument.fretted.guitar.steel.pedal.tab

Guitarra [notation] instrument.fretted.guitarra.5lines

Guitarra, Coimbra [tab] instrument.fretted.guitarra.coimbra.tab

Guitarra, Lisboa [tab] instrument.fretted.guitarra.lisboa.tab

Guitarra, Portuguesa [tab] instrument.fretted.guitarra.portuguesa.tab

Guitarrón [notation] instrument.fretted.guitarron.5lines

Global constants

128

Guitarrón [tab] instrument.fretted.guitarron.tab

Laúd [notation] instrument.fretted.laud.5lines

Laúd [tab] instrument.fretted.laud.tab

Tenor Lute [notation] instrument.fretted.lute.5lines

Bass Lute [notation] instrument.fretted.lute.bass-d.french.english.5lines

Bass Lute, D tuning, French/English [tab] instrument.fretted.lute.bass-d.french.english.tab

Bass Lute, D tuning, Italian [tab] instrument.fretted.lute.bass-d.italian.tab

Bass Lute, D tuning, Spanish [tab] instrument.fretted.lute.bass-d.spanish.tab

Tenor Lute, G tuning, Italian [tab] instrument.fretted.lute.italian.tab

Tenor Lute, G tuning, Spanish [tab] instrument.fretted.lute.spanish.tab

Tenor Lute, G tuning, French/English [tab] instrument.fretted.lute.tab

Tenor Lute, A tuning, French/English [tab] instrument.fretted.lute.tenor-a.french.english.tab

Tenor Lute, A tuning, Italian [tab] instrument.fretted.lute.tenor-a.italian.tab

Tenor Lute, A tuning, Spanish [tab] instrument.fretted.lute.tenor-a.spanish.tab

Treble Lute [notation] instrument.fretted.lute.treble-d.french.english.5lines

Treble Lute, D tuning, French/English [tab] instrument.fretted.lute.treble-d.french.english.tab

Treble Lute, D tuning, Italian [tab] instrument.fretted.lute.treble-d.italian.tab

Treble Lute, D tuning, Spanish [tab] instrument.fretted.lute.treble-d.spanish.tab

Mandolin [notation] instrument.fretted.mandolin.5lines

Mandolin [tab] instrument.fretted.mandolin.tab

Oud [notation] instrument.fretted.oud.5lines

Oud [tab] instrument.fretted.oud.tab

Qanoon instrument.fretted.qanoon.5lines

Requinto [notation] instrument.fretted.requinto.5lines

Requinto [tab] instrument.fretted.requinto.tab

Santoor instrument.fretted.santoor.5lines

Sitar [notation] instrument.fretted.sitar.5lines

Sitar (Ravi Shankar) [tab] instrument.fretted.sitar.ravi-shankkar.tab

Sitar (Vilayat Khan) [tab] instrument.fretted.sitar.vilayat-khan.tab

Tambura (Female) [notation] instrument.fretted.tambura.female

Tambura (Male) [notation] instrument.fretted.tambura.male

Tiple [notation] instrument.fretted.tiple.5lines

Tiple, Argentina [tab] instrument.fretted.tiple.argentina.tab

Tiple, Colombia ADF#B tuning [tab] instrument.fretted.tiple.colombia.tab.adfb

Tiple, Colombia DGBE tuning [tab] instrument.fretted.tiple.colombia.tab.dgbe

Tiple, Cuba [tab] instrument.fretted.tiple.cuba.tab

Tiple, Peru [tab] instrument.fretted.tiple.peru.tab

Tiple, Santo Domingo [tab] instrument.fretted.tiple.santo.domingo.tab

Tiple, Uruguay [tab] instrument.fretted.tiple.uruguay.tab

Tres [notation] instrument.fretted.tres.5lines

Tres, GCE tuning [tab] instrument.fretted.tres.tab

Tres, ADF# tuning [tab] instrument.fretted.tres.tab.adf

Tres, GBE tuning [tab] instrument.fretted.tres.tab.gbe

Ukulele [notation] instrument.fretted.ukulele.5lines

Ukulele [tab] instrument.fretted.ukulele.tab

Vihuela [notation] instrument.fretted.vihuela.5lines

Vihuela [tab] instrument.fretted.vihuela.tab

Zither instrument.fretted.zither

Keyboard instrument.keyboard

Accordion instrument.keyboard.accordion

Global constants

129

Bandoneon instrument.keyboard.bandoneon

Celesta instrument.keyboard.celesta

Clavichord instrument.keyboard.clavichord

Harmonium instrument.keyboard.harmonium

Harpsichord instrument.keyboard.harpsichord

Keyboards instrument.keyboard.keyboards

Tape Sampler Keyboard [Brass] instrument.keyboard.tape sampler.brass

Tape Sampler Keyboard [Choir] instrument.keyboard.tape sampler.choir

Tape Sampler Keyboard [Flute] instrument.keyboard.tape sampler.flute

Tape Sampler Keyboard [Strings] instrument.keyboard.tape sampler

Melodeon instrument.keyboard.melodeon

Electric Organ instrument.keyboard.organ.electric

Organ [manuals] instrument.keyboard.organ.manuals

Manual [solo organ manuals] instrument.keyboard.organ.manuals.solo

Ped. [Organ pedals] instrument.keyboard.organ.pedals

Pedal [solo organ pedals] instrument.keyboard.organ.pedals.solo

Piano instrument.keyboard.piano

Electric Piano instrument.keyboard.piano.electric

Electric Clavichord instrument.keyboard.piano.electric.clavichord

Electric Stage Piano instrument.keyboard.piano.electric.stage

Overdriven Electric Piano instrument.keyboard.piano.electric.overdriven

Honky-tonk Piano instrument.keyboard.piano.honky-tonk

Synthesizer instrument.keyboard.synthesizer

Unnamed (2 lines) instrument.other.2lines

Unnamed (3 lines) instrument.other.3lines

Unnamed (4 lines) instrument.other.4lines

Unnamed (bass staff) instrument.other.bassclef

No instrument (barlines shown) instrument.other.none.barlines

No instrument (bar rests shown) instrument.other.none.barrests

No instrument (hidden) instrument.other.none.hidden

Solo instrument.other.solo.real

Unnamed (treble staff) instrument.other.trebleclef

Almglocken instrument.pitchedpercussion.almglocken

Antique Cymbals instrument.pitchedpercussion.antiquecymbals

Chimes instrument.pitchedpercussion.bells.chimes

Chimes [no key] instrument.pitchedpercussion.bells.chimes.nokeysig

Bell lyre [marching band] instrument.pitchedpercussion.bells.marching

Orchestral Bells instrument.pitchedpercussion.bells.orchestral

Tubular Bells instrument.pitchedpercussion.bells.tubular

Cimbalom instrument.pitchedpercussion.cimbalom

Crotales instrument.pitchedpercussion.crotales

Steel Drums instrument.pitchedpercussion.drums.steel

Steel Drums [bass clef, treble transp.] instrument.pitchedpercussion.drums.steel.bassclef

Gamelan Kengong instrument.pitchedpercussion.gamelan.kengong

Gamelan Slentam instrument.pitchedpercussion.gamelan.slentam

Glockenspiel instrument.pitchedpercussion.glockenspiel

Alto Glockenspiel instrument.pitchedpercussion.glockenspiel.alto

Soprano Glockenspiel instrument.pitchedpercussion.glockenspiel.soprano

Handbells instrument.pitchedpercussion.handbells

Harp instrument.pitchedpercussion.harp

Global constants

130

Lever Harp instrument.pitchedpercussion.harp.lever

Kalimba instrument.pitchedpercussion.kalimba

Marimba [grand staff] instrument.pitchedpercussion.marimba

Marimba [treble staff] instrument.pitchedpercussion.marimba.trebleclef

Alto Metallophone instrument.pitchedpercussion.metallophone.alto

Bass Metallophone instrument.pitchedpercussion.metallophone.bass

Soprano Metallophone instrument.pitchedpercussion.metallophone.soprano

Roto-toms instrument.pitchedpercussion.roto-toms

Temple Blocks instrument.pitchedpercussion.templeblocks

Timpani [with key] instrument.pitchedpercussion.timpani

Timpani [no key] instrument.pitchedpercussion.timpani.nokeysig

Vibraphone instrument.pitchedpercussion.vibraphone

Wood Blocks [5 lines] instrument.pitchedpercussion.woodblocks

Xylophone instrument.pitchedpercussion.xylophone

Alto Xylophone instrument.pitchedpercussion.xylophone.alto

Bass Xylophone instrument.pitchedpercussion.xylophone.bass

Contra Bass Bar instrument.pitchedpercussion.xylophone.contrabass.bar

Gyil instrument.pitchedpercussion.xylophone.gyil

Soprano Xylophone instrument.pitchedpercussion.xylophone.soprano

Xylorimba instrument.pitchedpercussion.xylorimba

Alto instrument.singers.alto

Solo Alto instrument.singers.alto.solo

Altus instrument.singers.altus

Baritone instrument.singers.baritone

Solo Baritone instrument.singers.baritone.solo

Bass instrument.singers.bass

Solo Bass instrument.singers.bass.solo

Bassus instrument.singers.bassus

Cantus instrument.singers.cantus

Choir instrument.singers.choir

Contralto instrument.singers.contralto

Countertenor instrument.singers.counter-tenor

Mean instrument.singers.mean

Mezzo-soprano instrument.singers.mezzo-soprano

Quintus instrument.singers.quintus

Secundus instrument.singers.secundus

Soprano instrument.singers.soprano

Solo Soprano instrument.singers.soprano.solo

Tenor instrument.singers.tenor

Solo Tenor instrument.singers.tenor.solo

Treble instrument.singers.treble

Solo Treble instrument.singers.treble.solo

Voice instrument.singers.voice

Voice [male] instrument.singers.voice.male

Contrabass instrument.strings.contrabass

Bass [Double] instrument.strings.contrabass.bass

Double Bass instrument.strings.contrabass.double-bass

Solo Contrabass instrument.strings.contrabass.solo

String Bass instrument.strings.contrabass.string

Upright Bass instrument.strings.contrabass.upright

Global constants

131

Hurdy-gurdy instrument.strings.hurdy-gurdy

Sarangi instrument.strings.sarangi

Strings instrument.strings.section

Strings [reduction] instrument.strings.section.reduction

Bass Viol instrument.strings.viol.bass

Tenor Viol instrument.strings.viol.tenor

Treble Viol instrument.strings.viol.treble

Viola instrument.strings.viola

Solo Viola instrument.strings.viola.solo

Violin 1 instrument.strings.violin.1

Violin 2 instrument.strings.violin.2

Violin I instrument.strings.violin.I

Violin II instrument.strings.violin.ii

Solo Violin instrument.strings.violin.solo

Violoncello instrument.strings.violoncello

Solo Violoncello instrument.strings.violoncello.solo

Anvil instrument.unpitched.anvil

Cha-cha bell [1 line] instrument.unpitched.bells.cha-cha

Mambo bell [1 line] instrument.unpitched.bells.mambo

Sleigh Bells instrument.unpitched.bells.sleigh

Brake Drum [1 line] instrument.unpitched.brake-drum.1line

Cabasa [1 line] instrument.unpitched.cabasa

Cabasa [2 lines] instrument.unpitched.cabasa.2lines

Castanets instrument.unpitched.castanets

Shaker, Caxixi [1 line] instrument.unpitched.caxixi.1line

Claves [1 line] instrument.unpitched.claves

Shaker, Cocoa Bean Rattle [1 line] instrument.unpitched.cocoa bean.1line

Finger Cymbals [1 line] instrument.unpitched.cymbals.finger.1line

Percussion [1 line] instrument.unpitched.drums.1line

Percussion [2 lines] instrument.unpitched.drums.2lines

Berimbau instrument.unpitched.drums.2lines.berimbau

Percussion [3 lines] instrument.unpitched.drums.3lines

Percussion [4 lines] instrument.unpitched.drums.4lines

Percussion [5 lines] instrument.unpitched.drums.5lines

Agogos [2 lines] instrument.unpitched.drums.agogos

Bass Drum instrument.unpitched.drums.bass

Bass Drum [5 lines] instrument.unpitched.drums.bass.5lines

Marching Bass Drum [3 lines] instrument.unpitched.drums.bass.marching.3lines

Marching Bass Drum [5 lines] instrument.unpitched.drums.bass.marching.5lines

Itótele [Batá Drum] instrument.unpitched.drums.bata.itotele

Iyá [Batá Drum] instrument.unpitched.drums.bata.iya

Okónkolo [Batá Drum] instrument.unpitched.drums.bata.okonkolo

Bongos [2 lines] instrument.unpitched.drums.bongos

Bongo Bell [High] instrument.unpitched.drums.bongos.bell.high

Bongo Bell [Low] instrument.unpitched.drums.bongos.bell.low

Box instrument.unpitched.drums.box.3lines

Cajon [2 lines] instrument.unpitched.drums.cajon

Congas [2 lines] instrument.unpitched.drums.congas

Congas [1 line] instrument.unpitched.drums.congas.1line

Congas [3 lines] instrument.unpitched.drums.congas.3lines

Global constants

132

Congas [4 lines] instrument.unpitched.drums.congas.4lines

Cuíca [3 lines] instrument.unpitched.drums.cuica.3lines

Cymbals instrument.unpitched.drums.cymbal

Marching Cymbals [5 lines] instrument.unpitched.drums.cymbals.marching.5lines

Djembe [3 lines] instrument.unpitched.drums.djembe.3lines

Drum Set (Rock) instrument.unpitched.drums.drumset

Drum Set (Alternative) instrument.unpitched.drums.drumset.alternative

Drum Set (Brushes) instrument.unpitched.drums.drumset.brushes

Drum Set (Dance) instrument.unpitched.drums.drumset.dance

Drum Set (Disco) instrument.unpitched.drums.drumset.disco

Drum Set (Electronica) instrument.unpitched.drums.drumset.electronic

Drum Set (Fusion) instrument.unpitched.drums.drumset.fusion

Drum Set (Garage) instrument.unpitched.drums.drumset.garage

Drum Set (Hip-hop) instrument.unpitched.drums.drumset.hip-hop

Drum Set (Industrial) instrument.unpitched.drums.drumset.industrial

Drum Set (Jazz) instrument.unpitched.drums.drumset.jazz

Drum Set (Lo-Fi) instrument.unpitched.drums.drumset.lo-fi

Drum Set (Metal) instrument.unpitched.drums.drumset.metal

Drum Set (Motown) instrument.unpitched.drums.drumset.motown

Drum Set (New Age) instrument.unpitched.drums.drumset.new age

Drum Set (Pop) instrument.unpitched.drums.drumset.pop

Drum Set (Reggae) instrument.unpitched.drums.drumset.reggae

Drum Set (Stadium Rock) instrument.unpitched.drums.drumset.rock.stadium

Drum Set (Rods) instrument.unpitched.drums.drumset.rods

Drum Set (Drum Machine) instrument.unpitched.drums.drumset.tr-808

Dumbek [3 lines] instrument.unpitched.drums.dumbek.3lines

Kidi [Ewe Drum] instrument.unpitched.drums.ewe.kidi

Sogo [Ewe Drum] instrument.unpitched.drums.ewe.sogo

Gankokwe (Bell) instrument.unpitched.drums.gankokwe

Jam Blocks [2 lines] instrument.unpitched.drums.jamblocks

Jawbone [1 line] instrument.unpitched.drums.jawbone.1line

Pandeiro [2 lines] instrument.unpitched.drums.pandeiro

Rain Stick (High) [1 line] instrument.unpitched.drums.rainstick.high.1line

Rain Stick (Low) [1 line] instrument.unpitched.drums.rainstick.low.1line

Egg Shaker (High) [1 line] instrument.unpitched.drums.shaker.high.1line

Egg Shaker (Low) [1 line] instrument.unpitched.drums.shaker.low.1line

Egg Shaker (Medium) [1 line] instrument.unpitched.drums.shaker.medium.1line

Side Drum instrument.unpitched.drums.side

Snare Drum instrument.unpitched.drums.snare

Marching Snare Drums [5 lines] instrument.unpitched.drums.snare.5lines

Surdo [2 lines] instrument.unpitched.drums.surdo

Tabla instrument.unpitched.drums.table

Taiko Drum instrument.unpitched.drums.taiko

Tenor Drum instrument.unpitched.drums.tenor

Marching Tenor Drums [5 lines] instrument.unpitched.drums.tenor.marching

Quads [5 lines] instrument.unpitched.drums.tenor.marching.quads

Tom-toms [5 lines] instrument.unpitched.drums.tom-toms

Tom-toms [4 lines] instrument.unpitched.drums.tom-toms.4lines

Udu instrument.unpitched.drums.udu

Shaker, Egg Shaker [1 line] instrument.unpitched.egg shaker.1line

Global constants

133

Finger Click [1 line] instrument.unpitched.fingerclick

Gamelan Gong Ageng (High) [1 line] instrument.unpitched.gamelan.gong-ageng.high

Gamelan Gong Ageng (Low) [1 line] instrument.unpitched.gamelan.gong-ageng.low

Gamelan Kempyang and Ketuk [2 lines] instrument.unpitched.gamelan.kempyang-ketuk

Gamelan Khendang Ageng [1 line] instrument.unpitched.gamelan.khendang-ageng

Gamelan Khendang Ciblon [1 line] instrument.unpitched.gamelan.khendang-ciblon

Large Gong [1 line] instrument.unpitched.gong.large.1line

Medium Gong [1 line] instrument.unpitched.gong.medium.1line

Gourd [1 line] instrument.unpitched.gourd

Guira [1 line] instrument.unpitched.guira

Guiro (High) [1 line] instrument.unpitched.guiro.high

Guiro (Medium) [1 line] instrument.unpitched.guiro.medium

Handclap [1 line] instrument.unpitched.handclap

Shaker, Kayamba [1 line] instrument.unpitched.kayamba.1line

Maracas instrument.unpitched.maracas

Shaker, Gourd Maracas [1 line] instrument.unpitched.maracas.gourd.1line

Maracas [High] instrument.unpitched.maracas.high

Maracas [Medium] instrument.unpitched.maracas.medium

Mark tree [1 line] instrument.unpitched.marktree

Shaker, Nsak Rattle [1 line] instrument.unpitched.nsak.1line

Finger Snaps instrument.unpitched.orff.fingersnaps

Hand Claps instrument.unpitched.orff.handclaps

Patsch instrument.unpitched.orff.patsch

Stamp instrument.unpitched.orff.stamp

Salsa bell [1 line] instrument.unpitched.salsa.bell

Shaker [1 line] instrument.unpitched.shaker

Shaker, Shekere [1 line] instrument.unpitched.shekere.1line

Tam-tam instrument.unpitched.tam-tam

Tambourine instrument.unpitched.tambourine

Timbales [2 lines] instrument.unpitched.timbales.2lines

Timbales [5 lines] instrument.unpitched.timbales.5lines

Triangle instrument.unpitched.triangle

Shaker, Wasembe Rattle (High) [1 line] instrument.unpitched.wasembe.high.1line

Shaker, Wasembe Rattle (Low) [1 line] instrument.unpitched.wasembe.low.1line

Shaker, Wasembe Rattle (Medium) [1 line] instrument.unpitched.wasembe.medium.1line

Whip instrument.unpitched.whip

Whistle instrument.unpitched.whistle

Wind Chimes [1 line] instrument.unpitched.wind-chimes.1line

Wood Block [1 line] instrument.unpitched.woodblock.1line

Bagpipes instrument.wind.bagpipe

Basset Horn instrument.wind.basset-horn

Bassoon instrument.wind.bassoon

Contrabassoon instrument.wind.bassoon.contrabassoon

Quart Bassoon instrument.wind.bassoon.quart

Quint Bassoon instrument.wind.bassoon.quint

Clarinet in A instrument.wind.clarinet.a

Clarinet in Ab instrument.wind.clarinet.aflat

Alto Clarinet in Eb instrument.wind.clarinet.alto.eflat

Alto Clarinet in Eb [bass clef, treble transp.] instrument.wind.clarinet.alto.eflat.bassclef

Bass Clarinet in Bb instrument.wind.clarinet.bass.bflat

Global constants

134

Bass Clarinet in Bb [score sounds 8vb] instrument.wind.clarinet.bass.bflat.8vb-score

Bass Clarinet in Bb [bass clef, treble transp.] instrument.wind.clarinet.bass.bflat.bassclef

Clarinet in Bb instrument.wind.clarinet.bflat

Clarinet in C instrument.wind.clarinet.c

Contra Alto Clarinet in Eb instrument.wind.clarinet.contra.alto.eflat

Contra Alto Clarinet in Eb [score sounds 8vb] instrument.wind.clarinet.contra.alto.eflat.8vb-score

Contra Alto Clarinet in Eb [bass clef, treble transp.] instrument.wind.clarinet.contra.alto.eflat.bassclef

Contrabass Clarinet in Bb instrument.wind.clarinet.contrabass.bflat

Contrabass Clarinet in Bb [score sounds 15mb] instrument.wind.clarinet.contrabass.bflat.15mb-score

Contrabass Clarinet in Bb [bass clef, treble transp.] instrument.wind.clarinet.contrabass.bflat.bassclef

Clarinet in D instrument.wind.clarinet.d

Clarinet in Eb instrument.wind.clarinet.eflat

Clarinet in G instrument.wind.clarinet.g

Cor Anglais instrument.wind.coranglais

Didgeridoo instrument.wind.didgeridoo

Duduk instrument.wind.duduk

English Horn instrument.wind.englishhorn

Flageolet instrument.wind.flageolet

Flute instrument.wind.flute

Alto Flute instrument.wind.flute.alto

Bansuri instrument.wind.flute.bansuri

Bass Flute instrument.wind.flute.bass

Eb Flute instrument.wind.flute.eflat

G Flute instrument.wind.flute.g

Harmonica instrument.wind.harmonica

Heckelphone instrument.wind.heckelphone

Mey instrument.wind.mey

Nai instrument.wind.nai

Oboe instrument.wind.oboe

Baritone Oboe instrument.wind.oboe.baritone

Bass Oboe instrument.wind.oboe.bass

Oboe d'Amore instrument.wind.oboe.damore

Ocarina instrument.wind.ocarina

Panpipes instrument.wind.panpipes

Piccolo instrument.wind.piccolo

Military Piccolo in Db instrument.wind.piccolo.dflat

Alto Recorder instrument.wind.recorder.alto

Bass Recorder instrument.wind.recorder.bass

Great Bass Recorder instrument.wind.recorder.bass.great

Contrabass Recorder instrument.wind.recorder.contrabass

Descant Recorder instrument.wind.recorder.descant

Sopranino Recorder instrument.wind.recorder.sopranino

Soprano Recorder instrument.wind.recorder.soprano

Tenor Recorder instrument.wind.recorder.tenor

Treble Recorder instrument.wind.recorder.treble

Alto Saxophone instrument.wind.saxophone.alto

Baritone Saxophone instrument.wind.saxophone.baritone

Baritone Saxophone [score sounds 8vb] instrument.wind.saxophone.baritone.8vb-score

Baritone Saxophone [bass clef, treble transp.] instrument.wind.saxophone.baritone.bassclef

Bass Saxophone instrument.wind.saxophone.bass

Global constants

135

Beam options
For the Beam variable of NoteRest objects.

Breaks
These constants are used by the SetBreakType() method of Score objects.

These constants correspond to the menu entries in the Bars panel of the Properties window in the following way:

MiddleOfSystem Middle of system. The bar can only appear in the middle of a system, not at the end.

EndOfSystem No menu entry; created by Layout > Lock Format. The bar can only appear at the end of a
mid-page system, not the middle of a system or the end of a page.

MiddleOfPage Middle of page. The bar can appear anywhere except at the end of a page.

EndOfPage Page break. The bar can only appear at the end of a page.

NotEndOfSystem No menu entry. The bar can appear anywhere except the end of a mid-page system.

EndOfSystemOrPage System break. The bar can only appear at the end of a mid-page system or the end of a page.

Default No break. The bar can appear anywhere.

Bass Saxophone [score sounds 15mb] instrument.wind.saxophone.bass.15mb-score

Bass Saxophone [bass clef, treble transp.] instrument.wind.saxophone.bass.bassclef

C Melody Saxophone instrument.wind.saxophone.c-melody

Contrabass (Tubax) Saxophone instrument.wind.saxophone.contrabass

Contrabass (Tubax) Saxophone [score sounds 15mb] instrument.wind.saxophone.contrabass.15mb-score

Contrabass (Tubax) Sax [bass clef, treble transp.] instrument.wind.saxophone.contrabass.bassclef

F Mezzo Soprano Saxophone instrument.wind.saxophone.mezz-soprano.f

Sopranino Saxophone instrument.wind.saxophone.sopranino

Piccolo Saxophone in Bb [Soprillo] instrument.wind.saxophone.sopranino.bflat

Soprano Saxophone instrument.wind.saxophone.soprano

C Soprano Saxophone instrument.wind.saxophone.soprano.c

Subcontrabass (Tubax) Saxophone instrument.wind.saxophone.subcontrabass

Subcontrabass (Tubax) Saxophone [score sounds 15mb] instrument.wind.saxophone.subcontrabass.15mb-score

Subcontrabass (Tubax) Sax [bass clef, treble transp.] instrument.wind.saxophone.subcontrabass.bassclef

Tenor Saxophone instrument.wind.saxophone.tenor

Tenor Saxophone [score sounds 8vb] instrument.wind.saxophone.tenor.8vb-score

Tenor Saxophone [bass clef, treble transp.] instrument.wind.saxophone.tenor.bassclef

Woodwind instrument.wind.section

Shakuhachi instrument.wind.shakuhachi

Tin Whistle instrument.wind.whistle.tin

NoBeam 1

StartBeam 2

ContinueBeam 3

SingleBeam 4

MiddleOfSystem 1

EndOfSystem 2

MiddleOfPage 3

EndOfPage 4

NotEndOfSystem 5

EndOfSystemOrPage 6

Default 7

SpecialPageBreak 8

Global constants

136

Note that in older versions of ManuScript the constant MiddleOfSystem was called NoBreak and the constant
EndOfSystemwas called SystemBreak. These older names were confusing, because they implied a correlation with the sim-
ilarly-named menu items in the Properties window that was not accurate. The old names are still supported for old plug-ins, but
should not be used for new plug-ins. For consistency, the old constant PageBreak has also been renamed EndOfPage, even
though this did correlate correctly with the Properties window.

Accidentals
For the Accidental variable of Note objects.

Note Style names
For the NoteStyle variable of Note objects; these correspond to the noteheads available from the Notes panel of the Properties
window in the manuscript papers that are supplied with Sibelius.

MuteMode constants
These are the possible values of Stave.MuteMode:

Articulations
Used with Note.GetArticulation and Note.SetArticulation.

DoubleSharp 2

Sharp 1

Natural 0

Flat –1

DoubleFlat –2

NormalNoteStyle 0 BackSlashedNoteStyle 12

CrossNoteStyle 1 ArrowDownNoteStyle 13

DiamondNoteStyle 2 ArrowUpNoteStyle 14

BeatWithoutStemNoteStyle 3 InvertedTriangleNoteStyle 15

BeatNoteStyle 4 ShapedNote1NoteStyle 16

CrossOrDiamondNoteStyle 5 ShapedNote2NoteStyle 17

BlackAndWhiteDiamondNoteStyle 6 ShapedNote3NoteStyle 18

HeadlessNoteStyle 7 ShapedNote4StemUpNoteStyle 19

StemlessNoteStyle 8 ShapedNote4StemDownNoteStyle 23

SilentNoteStyle 9 ShapedNote5NoteStyle 20

CueNoteStyle 10 ShapedNote6NoteStyle 21

SlashedNoteStyle 11 ShapedNote7NoteStyle 22

Muted 0

HalfMuted 1

NotMuted 2

Custom3Artic 15

TriPauseArtic 14

PauseArtic 13

SquarePauseArtic 12

Custom2Artic 11

DownBowArtic 10

UpBowArtic 9

PlusArtic 8

HarmonicArtic 7

MarcatoArtic 6

AccentArtic 5

TenutoArtic 4

Global constants

137

SyllableTypes for LyricItems
Used in LyricItem.

Accidental styles
As used by Note.AccidentalStyle.

Time signature strings
These define the unicode characters used to draw common time and alla breve time signatures, so that you can recognise these by
comparison with TimeSignature.Text.

CommonTimeString

AllaBreveTimeString

Symbols
There are a lot of symbols in Sibelius. We’ve defined named constants for the indices of some of the most frequently used symbols,
which can be passed to Bar.AddSymbol. For other symbols, you can work out the required index by “counting along” in the
Create > Symbol dialog of Sibelius, or by using the method Score.SymbolIndex. To help with the “counting along,” we’ve
defined a constant for the start of every group of symbols in the Create > Symbol dialog, and these are also given below. Then for
example you can access the 8va symbol as OctaveSymbols + 2.

WedgeArtic 3

StaccatissimoArtic 2

StaccatoArtic 1

Custom1Artic 0

MiddleOfWord 0

EndOfWord 1

NormalAcc "0"

HiddenAcc "1"

CautionaryAcc "2"

BracketedAcc "3"

Common symbol indices

SegnoSymbol "1"

CodaSymbol "2"

RepeatBeatSymbol "5"

RepeatBarSymbol "6"

RepeatTwoBarsSymbol "7"

TrillSymbol "32"

BracketedTrillSymbol "33"

MordentSymbol "36"

InvertedMordentSymbol "37"

TurnSymbol "38"

InvertedTurnSymbol "39"

ReversedTurnSymbol "40"

TripleMordentSymbol "41"

InvertedTripleMordentSymbol "42"

PedalSymbol "48"

PedalPSymbol "49"

PedalUpSymbol "50"

LiftPedalSymbol "51"

HeelOneSymbol "52"

HeelTwoSymbol "53"

Global constants

138

Tuplets
These define the constants that can be passed as a style parameter to Bar.AddTuplet() and Tuplet.AddNestedTuplet().

These define the constants that can be passed as a bracket parameter:

ToeOneSymbol "54"

ToeTwoSymbol "55"

CommaSymbol "247"

TickSymbol "248"

CaesuraSymbol "249"

ThickCaesuraSymbol "250"

Indices at the start of each group of symbols

RepeatSymbols "0"

GeneralSymbols "16"

OrnamentSymbols "32"

KeyboardSymbols "48"

ChromaticPercussionSymbols "64"

DrumPercussionSymbols "80"

MetallicPercussionSymbols "96"

OtherPercussionSymbols "112"

BeaterPercussionSymbols "128"

PercussionTechniqueSymbols "160"

GuitarSymbols "176"

ArticulationSymbols "208"

AccidentalSymbols "256"

NoteSymbols "288"

NoteheadSymbols "320"

RestSymbols "368"

ConductorSymbols "400"

ClefSymbols "416"

OctaveSymbols "448"

BreakSymbols "464"

TechniqueSymbols "480"

AccordionSymbols "496"

HandbellSymbols "528"

MiscellaneousSymbols "544"

Symbol size constants

NormalSize "0"

CueSize "1"

GraceNoteSize "2"

CueGraceNoteSize "3"

TupletNoNumber "0"

TupletLeft "1"

TupletLeftRight "2"

TupletLeftRightNote "3"

TupletBracketOff "0"

TupletBracketOn "1"

TupletBracketAuto "2"

Global constants

139

Special barlines

Special page break types

Interval types

InMultirest values

Page number visibility values

Page number format values

SpecialBarlineStartRepeat "0"

SpecialBarlineEndRepeat "1"

SpecialBarlineDashed "2"

SpecialBarlineDouble "3"

SpecialBarlineFinal “4”

SpecialBarlineInvisible “5”

SpecialBarlineBetweenStaves “6”

SpecialBarlineNormal “7”

SpecialBarlineTick “8”

SpecialBarlineShort “9”

NoPageBreak "0"

MusicRestartsAfterXPages "1"

MusicRestartsOnNextLeftPage "2"

MusicRestartsOnNextRightPage “3”

IntervalDiatonic "-1"

Interval5xDiminished “0”

Interval4xDiminished “1”

Interval3xDiminished “2”

Interval2xDiminished "3"

IntervalDiminished "4"

IntervalMinor “4”

IntervalMajor “5”

IntervalPerfect “5”

IntervalAugmented “6”

Interval2xAugmented “7”

Interval3xAugmented “8”

Interval4xAugmented “9”

Interval5xAugmented “10”

NoMultirest "0"

StartsMultirest "1"

EndsMultirest "2"

MidMultirest “3”

PageNumberShowAll "0"

PageNumberHideFirst "1"

PageNumberHideAll "2"

PageNumberFormatNormal "0"

PageNumberFormatRomanUpper "1"

PageNumberFormatRomanLower "2"

Global constants

140

Bar rest type values

GuitarScaleDiagram type values

FeatheredBeamType values
For the FeatheredBeamType variable of NoteRest objects.

SingleTremolos
For the SingleTremolos variable of NoteRest objects, the constants are numbers in the range 0 to 7, representing the number
of tremolo beams on the stem of the note or chord. For a “z on stem” (for buzz rolls), use the value -1 or the constant ZOnStem.

Types of Objects in a Bar
The Type field for objects in a bar can return one of the following values:

PageNumberFormatLetterLower “3”

WholeBarRest "0"

BreveBarRest "1"

OneBarRepeat "2"

TwoBarRepeat “3”

FourBarRepeat “4”

ScaleTypeMajor "0"

ScaleTypeMinor "1"

ScaleTypeHarmonicMinor "2"

ScaleTypeMelodicMinor “3”

ScaleTypeDorian “4”

ScaleTypePhrygian “5”

ScaleTypeLydian “6”

ScaleTypeMixolydian “7”

ScaleTypeLocrian “8”

ScaleTypeWholeTone “9”

ScalrTypeDiminishedHalfWhole “10”

ScaleTypeDiminishedWholeHalf “11”

ScaleTypeAlteredDominant “12”

ScaleTypeLocrianSharp2 “13”

ScaleTypeLydianFlat7 “14”

ScaleTypeMajorBebop “15”

ScaleTypeDominantBebop “16”

ScaleTypeLydianSharp5 “17”

ScaleTypePhrygianDominant “18”

ScaleTypeAugmentedArpeggio “19”

ScaleTypeMajor7thArpeggio “20”

ScaleType7thArpeggio “21”

ScaleTypeMin7Flat5Arpeggio “22”

ScaleTypeDiminished7thArpeggio “23”

ScaleTypeMajorPentatonic “24”

ScaleTypeMinorPentatonic “25”

ScaleTypeOther “26”

FeatheredBeamNone "0"

FeatheredBeamAccel "1"

FeatheredBeamRit "2"

Global constants

141

Clef, SpecialBarline, TimeSignature, KeySignature

Line, ArpeggioLine, CrescendoLine, DiminuendoLine, GlissandoLine, OctavaLine, PedalLine,
RepeatTimeLine, Slur, Trill, Box, Tuplet, RitardLine

LyricItem, Text, GuitarFrame, GuitarScaleDiagram, Transposition, RehearsalMark,
InstrumentChange

BarRest, NoteRest, Graphic, Barline, Comment

Global constants

142

What’s new in Sibelius 6

If you have used previous versions of Sibelius, you may be interested to know about the improvements to ManuScript added in
Sibelius 6. The following is a list of the various new objects, methods and variables:

New objects
* New Comment BarObject object, corresponding to comments created via Create > Comment – see Comment on page 54.
* New DateTime object, which can return information about the date and time – see DateTime on page 57.
* New Dictionary object, for creating convenient structures with encapsulated data and methods – see Dictionary on page

58.
* New DynamicPartCollection and DynamicPart objects, which allow plug-ins to access, create and edit dynamic parts

– see DynamicPartCollection on page 59 and DynamicPart on page 60.
* New GuitarScaleDiagram object, allowing plug-ins to access information about guitar scale diagrams – see Guitar-

ScaleDiagram on page 66.
* New SparseArray object, for creating Javascript-style sparse arrays – see SparseArray on page 98
* New VersionHistory, Version and VersionComment objects, allowing plug-ins to access, create and delete versions

within scores – see VersionHistory on page 115, Version on page 116 and VersionComment on page 117.

New methods
* Bar object (see Bar on page 43):

% Bar.GetInstrumentTypeAt() provides the current instrument type at the given bar
* BarObject objects (see BarObject on page 49):

% New methods for getting and setting the voices of objects.
% ResetPosition() and ResetDesign(), equivalent to the commands in the Layout menu.

* Many new methods for the GuitarFrame object – see GuitarFrame on page 63.
* Plugin object (see Plugin on page 83):

% Plugin.MethodExists() returns True if the specified method exists
% Plugin.DataExists() returns True if the specified data exists
% Plugin.DialogExists() returns True if the specified dialog exists

* Score object (see Score on page 85):
% Score.SaveAsSibelius5(), to export the current Sibelius 6 score in Sibelius 5 format.
% New methods to get and set the current position of the playback line, and to start and stop playback.

* Selection object (see Selection on page 89):
% Selection.Deselect() method, making it simple to remove an object from a selection.

* Sibelius object (see Sibelius on page 92):
% Sibelius.CreateRTFFile() and Sibelius.AppendLineToRTFFile allow plug-ins to create Rich Text Format

(RTF) text files
* Utils plug-in (see Utils on page 111):

% AbsoluteValue() returns the absolute value of a number, i.e. its numerical value without regard to its sign.
% GreatestCommonDivisor() returns the greatest common divisor of two non-zero integers, i.e. the largest positive

integer that divides both numbers without remainder.

Improved methods
* Bar object (see Bar on page 43):

% bar.InsertBarRest can now create repeat bars and double whole note (breve) rests
% bar.AddText and bar.AddLyric now allow you to specify the voice in which the new text or lyric should be created.

* Score object (see Score on page 85):

What’s new in Sibelius 6

143

% score.SaveAsAudio() method now fails gracefully if the current playback configuration contains unsuitable devices
(i.e. not virtual instruments)

* Sibelius object (see Sibelius on page 92):
% Sibelius.GetNotesForGuitarChord() has been improved.
% Sibelius.ActiveScore is now read/write, so you can bring a specific open score to the front.
% You can now iterate over open scores via the Sibelius object.

New variables
* Bar objects provide read-only variables to determine the position of a bar on a given system, and whether or not a bar in a

given staff is currently hidden by way of Hide Empty Staves – see Bar on page 43.
* BarObject objects provide a read/write variable for the draw order of an object in the score, for whether or not the object is

set to use Magnetic Layout, and for the voice(s) of the object – see BarObject on page 49.
* BarRest objects now provide variables for their rest type (e.g. normal, breve, repeat bar), and whether they have a fermata

(pause) on them – see BarRest on page 52.
* GuitarFrame objects now provide a variable for whether or not the given chord symbol is recognized as a valid chord type –

see GuitarFrame on page 63
* InstrumentType objects provide a read-only variable to determine whether or not the instrument type has the new Vocal

staff property set – InstrumentType on page 69.
* NoteRest objects provide variables for new properties such as jazz articulations (scoops, falls, doits, plops), stemlets, single

tremolos (including “z on stem”), stemlets and feathered beams – see NoteRest on page 76.
* Score objects provide a read/write variable for whether or not Layout > Magnetic Layout is switched on in the score – Score

on page 85.
* Staff objects provide direct access to the initial instrument type used by the staff, and information about whether or not the

staff has the new Vocal staff property set – see Staff on page 100.
* TimeSignature objects provide read/write access to whether or not they will display a cautionary time signature at the end

of the previous system – see TimeSignature on page 108.

Dialog improvements
* It is now possible to create group boxes in the plug-in dialog editor.
* If you set the contents of the variable that represents the contents of an edit control to an empty string, the edit control in the

dialog will also be made empty.
* If an edit control in a dialog is set to have the initial focus, its contents will now be selected when the dialog appears.

Language improvements
All objects (with a few exceptions) can now have user properties assigned to them – see User properties on page 21.

	Introduction
	Rationale
	Technical support
	Mailing list for plug-in developers

	Tutorial
	Edit Plug-ins
	A simple plug-in
	Three types of information
	Methods
	Editing the code
	Where plug-ins are stored
	Line breaks and comments
	Variables
	Converting between numbers, text and objects

	Loops
	“for” and “while”
	The if statement
	Arithmetic

	Objects
	Objects in action

	Representation of a score
	The system staff
	Representation of notes, rests, chords and other musical items

	The “for each” loop
	Indirection, sparse arrays and user properties
	Indirection
	Sparse arrays
	User properties
	Dictionary
	Using user properties as global variables
	Watch out for recursive cycles!

	Dialog editor
	Other things to look out for
	Deleting multiple objects from a bar

	Debugging your plug-ins
	Undo
	Plug-in Trace Window
	Checking the validity of objects
	Stopping the plug-in

	Storing and retrieving preferences
	How does it work?
	Initializing the database
	Accessing data
	Commands for local variables
	Miscellaneous
	Basic example

	Reference
	Syntax
	Expressions
	Operators
	Condition operators
	Arithmetic

	Object Reference
	Hierarchy of objects
	All objects
	Methods
	User properties

	Bar
	Methods
	Variables

	BarObject
	Methods
	Variables

	BarRest
	Methods
	Variables

	Clef
	Methods
	Variables

	Comment
	Methods
	Variables

	ComponentList
	Methods
	Variables

	Component
	Methods
	Variables

	DateTime
	Methods
	Variables

	Dictionary
	Methods
	Variables
	Converting old-style hash tables to dictionaries

	DynamicPartCollection
	Methods
	Variables

	DynamicPart
	Methods
	Variables

	File
	Methods
	Variables

	Folder
	Methods
	Variables

	GuitarFrame
	Methods
	Variables

	GuitarScaleDiagram
	Methods
	Variables

	InstrumentChange
	Methods
	Variables

	InstrumentTypeList
	Methods
	Variables

	InstrumentType
	Methods
	Variables

	HitPointList
	Methods
	Variables

	HitPoint
	Methods
	Variables

	KeySignature
	Methods
	Variables

	Line
	Methods
	Variables

	LyricItem
	Methods
	Variables

	NoteRest
	Methods
	Variables

	Note
	Methods
	Variables

	PageNumberChange
	Methods
	Variables

	PluginList
	Methods
	Variables

	Plugin
	Methods
	Variables

	RehearsalMark
	Methods
	Variables

	Score
	Methods
	Variables

	Selection
	Methods
	Variables
	Copying entire bars
	Copying multiple selections from one bar to another

	Sibelius
	Methods
	Variables

	SparseArray
	Methods
	Variables
	Converting old-style arrays to new sparse arrays

	SpecialBarline
	Methods
	Variables

	Staff
	Methods
	Variables

	Syllabifier
	Methods
	Variables

	SymbolItem and SystemSymbolItem
	Methods
	Variables

	SystemStaff, Staff, Selection, Bar and all BarObject- derived objects
	Variables

	SystemStaff
	Methods
	Variables

	TextItem and SystemTextItem
	Methods
	Variables

	TimeSignature
	Methods
	Variables

	TreeNode
	Methods
	Variables

	Tuplet
	Methods
	Variables

	Utils
	VersionHistory
	Methods
	Variables

	Version
	Methods
	Variables

	VersionComment
	Methods
	Variables

	Global constants
	Global constants
	Truth values
	Measurements
	Positions and durations
	Style names
	Bar number formats
	Line styles
	Text styles
	Clef styles
	Instrument types
	Beam options
	Breaks
	Accidentals
	Note Style names
	MuteMode constants
	Articulations
	SyllableTypes for LyricItems
	Accidental styles
	Time signature strings
	Symbols
	Tuplets
	Special barlines
	Special page break types
	Interval types
	InMultirest values
	Page number visibility values
	Page number format values
	Bar rest type values
	GuitarScaleDiagram type values
	FeatheredBeamType values
	SingleTremolos
	Types of Objects in a Bar

	What’s new in Sibelius 6
	New objects
	New methods
	Improved methods
	New variables
	Dialog improvements
	Language improvements

